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Abstract

Let f : Cn+1 → C be a germ of hypersurface with isolated singularity. The

variation of mixed Hodge structure associated to the Milnor fibration of f

is polarized and can be extended over the puncture using the gluing data

of the local system of the variation of mixed Hodge structure associated to

f . The extended fiber can be explained as Ωf the module of relative dif-

ferentials of f which is also isomorphic to the Jacobi algebra associated to

f . A MHS structure is also defined on the new fiber Ωf . We show that the

polarization on the extended fiber is a modification of Grothendieck residue

product. In this way Grothendieck residue induces a set of forms {R̂esk}
which define polarizations on the primitive subspaces of pure Hodge struc-

tures GrWk Ωf . The extension procedure using some gluing isomorphisms

always defines an opposite filtration to the limit Hodge filtration by the

works of M. Saito, P. Deligne and G. Pearlstein. The above form polarizes

the complex variation of Hodge structure defined by G. Pearstein et. al.

According to this we formulate a Riemann-Hodge bilinear relations for the

Grothendieck residue on Ωf (and the same for the Jacobi algebra of f). We

also discuss on an R-splitting for the Deligne-Hodge bigrading of the MHS

in this case using a theorem of Cattani-Kaplan-Schmid. The formulation

of Riemann-Hodge relations allows to associate a signature to the modified

Grothendieck residue pairing. We generalize these results for any admissible

normal crossing PVMHS with quasi-unipotent monodromy. An application

of this to extension of Neron models of pure Hodge structure is also given.

As other application we provide a proof of semi-definiteness of Hochster

Theta pairing.
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Chapter 1

Introduction

1.0.1 Classical Hodge theory

It was first observed by W. Hodge that the cohomologies of a smooth com-

plex projective variety X (more generally any compact Kahler manifold)

admits an additional structure as:

∀k ∈ N, Hk(X,C) =
⊕
p+q=k

Hp,q(X), Hq,p = Hp,q (1.1)

where Hp,q(X) = Hq(X,Ωp
X), is the Dolbeault cohomology. Such a de-

composition property for a vector space is classically called a pure Hodge

structure. There is an important point to be mentioned. That is the vector

space Hk(X,C) has an structure defined over Q (or even Z) coming from

Hk(X,Q). The decomposition in (1.1) can also be equivalently explained by

the existence of a decreasing filtration F p := ⊕r≥pHr,s on Hk(X,C). An-

other point in (1.1) is the integer k , called the weight of the Hodge structure,

which plays an important role. The cohomology of a non-compact Kahler

manifold, or a non-projective smooth quasi-projective variety does not usu-

ally satisfy this decomposition. Singularities of varieties also prevent such a

decomposition (although the Q-structure still exists), [SA1]. A more com-

plicated structure holds in the latter cases, which is referred to as mixed

Hodge structure. In which the vector space has a filtration W defined over

Q whose graded pieces satisfies (1.1).

A. Grothendieck in his comparison theorem, shows that

H i
dr(X/C) := Hi(X,Ω•X) ∼= H i(Xan,C) (1.2)

where Hi(X,Ω•X) stands for hypercohomology of the complex of sheaves
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Chapter 1. Introduction

of holomorphic differential forms on X. This isomorphism is given by in-

tegration of algebraic differential forms along homology cycles, and is the

base knowledge to define periods. The comparison theorem enables us to

calculate the cohomology of the complement to a hyper-surface (or more

generally a normal crossing divisor) in projective space (resp. a projective

manifold) by means of the cohomology classes generated by rational differen-

tial forms. Using a spectral sequence argument Deligne [D1] shows that the

cohomologies of complement of a normal crossing divisor has also a mixed

Hodge structure. J. Steenbrink establishes a mixed Hodge structure (limit

MHS) on the cohomologies of fibers of a projective map f : X → S, by

using Hironaka resolution of singularities, followed by a spectral sequence

(of a double complex) associated to the natural stratification by the nor-

mal crossing divisor. In this way we are concerned with Q-local systems

that have mixed Hodge structures. The information of such local system is

reflected in a representation of local monodromies.

For a smooth proper morphism f : X → S of algebraic varieties/C, there

exists a canonical isomorphism Hi
dR(X/S) ∼= Rifan∗ (C) ⊗C OSan , [SP] sec.

10.4. The presence of the locally constant sheaf H = Rif∗(C) provides a flat

(Gauss-Manin) connection on Hi
dR(X/S). This is by the Riemann-Hilbert

correspondence. Assume S is one dimensional, and locally like the disc.

When the family of varieties Xt defined by the morphism f degenerates

at the point 0 ∈ S, then the Gauss-Manin connection has a singularity at

the point 0. This singularity is regular. The notion of regular connection

generalizes the classical notion of a differential equation with a regular sin-

gular point. We are interested to local systems that have Hodge structure.

That is we have a decreasing filtration F pHk(Xt,C). This happens if the

fibers Xt are projective varieties. Then the monodromy on the vector space

Hn(Xt,C) is quasi-unipotent, and one of the important facts we have is the

Griffiths transversality

∇F p ⊂ F p−1 ⊗ Ω1
S

The regular singular connections can be explained via Deligne canonical

2



Chapter 1. Introduction

extension. Assume (H,∇) is an analytic vector bundle with an integrable

connection on a complex manifold S, with S ↪→ S̄ as a Zariski open dense

submanifold. Choose a multivalued flat frame (A1(z), ..., An(z)) for Hp over

a small neighbourhood of p ∈ S̄ − S. Let M = Ms.Mu be the Jordan

decomposition of a monodromy around p, where Ms = diag(dk) is the semi-

simple and Mu is uni-potent upper-triangular. Set N = −1
2πi logMu. Let

si(A)(z) = exp(N log(z)).Ai(z) (1.3)

si(A)(z) is a single valued section of H over U . Furthermore, {si(A)}1≤i≤n
provide a frame for a holomorphic extension H̄ of the bundle. In brief The

Deligne extension of H, is the vector bundle on S whose sections are given

by (1.10). It is isomorphic to H and its sections have moderate growth

near the boundary points. The notation for Deligne extension is usually

ψt where t is the coordinate on S. Sometimes this notation is used for the

sheaf sections of the aforementioned vector bundle. Deligne extension is a

basic toll to study local systems which have origins in Hodge theory. This

notion should not be confused with other notions of extensions that exists

for variation of Hodge structures. In this text we use a notion of extension

for PVMHS which is called minimal extension in the literature. A concrete

example of this concept has been explained in section 8.5 in the special case

of isolated hypersurface singularity.

P. Griffiths [G1] studied properties of integrals of algebraic functions in

terms of the period matrix space and period map. Considering the Hodge

filtration F pHn(Xt) only, we can associate a flag in H to every point t in S,

H = F 0
t ⊃ F 1

t ⊃ ... ⊃ Fn+1
t = 0 (1.4)

and hence obtain a point F •t in a flag manifold. We obtain a period map

Φ : S → D (1.5)

In coordinates the period map is given by periods of integrals. In fact the

definition of Φ needs some modifications, since as t moves round a loop in

3



Chapter 1. Introduction

S, the identification of Hn(Xt) with itself need not to be identity. We have

to consider a map Φ̃ : H → D of the universal cover of S, or a map Φ from

S to a quotient of D by some group. Therefore, a period map is of the form

Φ : S → D/Γ

where Γ is the monodromy group. The domain D parametrizes the Hodge

filtrations with the same Hodge numbers and polarization is classically re-

ferred as the period domain. It is convenient to consider a period domain

D as an open subset of a complex manifold Ď namely its compact dual,

to inherit complex structure on it. This is usually done using the fact that

the automorphism group G of the polarization, acts transitively on D (by

basic linear algebra). The extension of the map Φ is the major content of

asymptotic Hodge theory in the study of degeneration of Hodge structure.

For local systems of Hodge structures on manifolds, locally a period map

looks like

Φ : (4∗)r ×4n−r → D/Γ (1.6)

as it is equivalent its lifting,

Φ̃ : Hr ×4n−r → D (1.7)

where H is the upper half plane. Assuming r = n for simplicity and the

monodromies are quasi-unipotent, the map Ψ : Hr → Ď defined by

Ψ(z1, ..., zr) := exp(−
r∑
j=1

zjNj)Φ̃(z1, ..., zr) (1.8)

where, Nj = logMj,u is called the un-twisted period map and is the lifting

of a holomorphic map ψ : (4∗)r → D;

ψ(t1, ..., tr) = Ψ(
log t1
2πi

, ...,
log tr
2πi

). (1.9)

Theorem 1.0.1. (Nilpotent Orbit Theorem - W. Schmid) ([SCH] Theorem

4.9 and 4.12) Let Φ : (4∗)r×4n−r → D be a period map, and let N1, ..., Nr

4



Chapter 1. Introduction

be monodromy logarithms. Let

ψ : (4∗)r ×4n−r → Ď (1.10)

be as above; then

• The map ψ extends holomorphically to (4)r ×4n−r.

• For each w ∈ 4n−r, the map θ : Cr ×4n−r → Ď given by

θ(z, w) = exp(
∑
zjNj).ψ(0, w)

is a nilpotent orbit. Moreover, for, w ∈ C a compact subset, there

always exists α > 0 such that θ(z, w) ∈ D for Im(zj) > α.

• For any G-invariant distance on D, there exists positive constants β,K

such that for Im(zj) > α,

d(Φ(z, w), θ(z, w)) ≤ K
∑
j

(Im(zj))
βe−2πIm(zj). (1.11)

Moreover, the constants α, β,K depend only on the choice of the metric

d and the weight and Hodge numbers used to define D. They may be

chosen uniformly for w in a compact subset.

A candidate for the metric on D is given by the polarization form Q. This

is explained by a classical fact about the tangent spaces of flag manifolds,

cf. [SCH]. In case of taking the metric induced by polarization, the (Lie)

group G in the last item is the automorphism group of Q. The estimate

obtained in the last item in the theorem is of interest in asymptotic Hodge

theory. The nilpotent orbit theorem guarantees the existence of a limit

for the map ψ at 0 using some distance estimates on natural metrics on

Ď induced by polarization. This limit is called the limit Hodge filtration,

which plays an important role to us. It is not in general unique, because it

would depend on the choice of coordinates. In several variable (i.e. over a

base of higher dimension) one may study the afore-mentioned limit of (1.9)

5



Chapter 1. Introduction

along different positive cones of nilpotent transformations on the Hodge

structure. The definition of period domains and nilpotent orbit theorem

can be generalized to mixed Hodge structures, where similar theorem can

be obtained for admissible MHS, [P1].

Another important theorem in asymptotic Hodge theory is the sl2-orbit

theorem,

Theorem 1.0.2. (sl2-orbit Theorem - W. Schmid) ([SCH] Theorem 5.3)Let

z → exp(z.N).F be a nilpotent orbit. Then there exists,

• A filtration F√−1 := exp(iN).F0 lies in D.

• A homomorphism ρ : sl(2,C)→ g, Hodge at F√−1.

• N = ρ(X−)

• A real analytic GR-valued function g(y), such that;

• For y >> 0, exp(iy.N).F = g(y) exp(iyN).F0, where F0 = exp(−iN).F√−1.

• Both g(y) and g(y)−1 have convergent power series expansion at y =∞
of the form 1 +

∑
Any

−n with

An ∈Wn−1g ∩ ker(adN)n+1 (1.12)

This theorem mainly asserts that from any nilpotent orbit ( It means if

we take F ∈ Ď, the orbit of the Hodge flag in the assumption lies in D from

some point on ) one can withdraw some distinguished orbit ( this is the role

of the function g in the theorem ) which is real split, i.e can be written as

direct sum of pure Hodge structures ( this is by the representation ρ ). The

concepts of this theorem should be understood as a matter of representation

theory, and can be applied to general period maps. Exploring the sl2-triples

for Hodge structure is a basic tool to study their real splittings. In section

8.7 we apply this idea to the mixed Hodge structure of isolated hypersurface

singularities and their extensions to 0.

6



Chapter 1. Introduction

A polarization for a Hodge structure (HQ, F
•) of weight k, consists of a

bilinear form S on HC which is defined over Q and which is symmetric for

k even, skew symmetric for k odd, such that

S(Hp,q, Hr,s) = 0, unless p = s, q = r

ip−qS(v, v̄) > 0, v 6= 0

where Hp,q := F p ∩ F̄ q. If N ∈ End(HQ) is a nilpotent transformation,

there exists a unique filtration W • such that

• Wl ⊂Wl−2

• The induced map N l : GrWl HQ → GrW−lHQ is an isomorphism for all

l ≥ 0

Then the primitive subspaces w.r.t N are defined by

PGrWl := kerN l+1 : GrWl HQ → GrW−l−2HQ

The non-degenerate form S determines a set of non-degenerate forms

Sl : PGrWl ⊗ PGrWl → C, Sl := S ◦ (id⊗N l)

which are polarization forms for PGrWl , [H1], see also Theorem 3.1.2.

Assume we are given a projective map f : X → T (i.e. the fibers are

projective varieties) over the disc T which is holomorphic over T ′ = T − 0.

Set X∞ := X ×T ′ H where H is the upper half plane. Equip Hk(X∞,C)

with the limit mixed Hodge structure (F∞,WL), where L is the Kahler class.

On the primitive subspaces P k(X∞) consider the bilinear form

Q(x, y) =

∫
Xt

(−1)k(k−1)/2in−kψ−1
t (x ∧ y). (1.13)

Then Q does not depend on the choice of t. Denote

Pk,r(X∞) = ker(N r+1 : GrWk+rP
k(X∞)→ GrWk−rP

k(X∞)). (1.14)

7



Chapter 1. Introduction

Then Pk,r(X∞) carries a Hodge structure of weight k + r. Let

Pk,r(X∞) =
⊕

a+b=k+r

P a,bk,r (X∞) (1.15)

be its Hodge decomposition. Denote Qr the bilinear form on Pk,r(X∞)

defined by Qr(x, y) = Q(x̃, N rỹ).

Theorem 1.0.3. (J. Steenbrink-W. Schmid)(see [JS2]) Assume f : X → S

be a family of projective manifolds. Equip the variation of Hodge structure

Hk(X∞,C) with the W. Schmid limit MHS (F∞,WL). Let Pk, Pk,r be the

primitive subspaces as defined above. Then the following holds,

• Qr(x, y) = 0 if x ∈ P a,bk,r (X∞), y ∈ P c,dk,r (X∞) and (a, b) 6= (c, d)

• ia−bQr(x, x̄) > 0 if x ∈ P a,bk,r (X∞), x 6= 0

Theorem 1.0.3 is important to us as a matter beginning explicit form of

Riemann-Hodge bilinear relations for polarized MHS in projective fibrations.

In Chap. 3 we try to approach a proof of 1.0.3. In Chap.’s 4 and 5 we explain

how this generalizes to the affine (local) fibrations with isolated singularity.

1.0.2 Isolated hypersurface singularities

Assume f : X → T is the Milnor fibration associated to an isolated hy-

persurface singularity. With a suitable coordinate change one can embed

the fibration into a projective one fY : Pn+1 → C by possibly inserting

a singular fiber and the degree of fY be as large as we like. If f is a

polynomial of sufficiently high degree s.t the properties above are satisfied.

Then, the mapping i∗ : Pn(Y∞) → Hn(X∞) is surjective and the kernel is

ker(i∗) = ker(MY − id). There is a short exact sequence of mixed Hodge

structures

0→ ker(MY − id)→ Pn(Y∞)→ Hn(X∞)→ 0. (1.16)

There is a (−1)n-symmetric non-degenerate intersection form IcohY on

Pn(Yt,Q). We set SY = (−1)n(n−1)/2IcohY . The pure Hodge structures on

8



Chapter 1. Introduction

Pn(Yt,Q) are polarized by SY and give a variation of Hodge structure in

the sense of Schmid. This induces a holomorphic mapping t 7−→ F •u(t) from

the universal cover H of T ′ to a classifying space for Hodge filtrations on

Pn(Y∞) which satisfies F •u(t+1) = M−1
Y F •u(t). Following W. Schmid the limit

filtration

F •∞ = lim
Im(t)→∞

exp(NY .t)F
•
u(t) (1.17)

on Pn(Yt,C) is well defined. SY , NY ,W•, F
•
∞ give a polarized mixed Hodge

structure on Pn(Y∞). It is invariant w.r.t MY,s, [H1]. Let

Hn = Hn
6=1 ⊕Hn

1

be the decomposition into generalized eigenspaces of monodromy. The re-

striction i∗ : Pn(Y∞)6=1 → Hn(X∞)6=1 is an isomorphism. SY induces a

polarization, S on Hn(X∞)6=1. One can express S in terms of the intersec-

tion form I, on Hn(X∞)6=1.

The restriction of S to Hn(X∞)1 is defined by S(a, b) := SY (ã, NY b̃), where

ã, b̃ are the lifts of a, b in Pn(Y∞) respectively. The form S is well-defined

and non-degenerate as, ker i∗ = kerNY ∩ Pn(Y∞)1, [H1].

Theorem 1.0.4. [H1] Assume f : Cn+1 → C be an isolated hypersurface

singularity. The Steenbrink MHS and S yields a PMHS of weight n on

Hn(X∞,Q) 6=1 and PMHS of weight n+ 1 on Hn(X∞,Q)1.

Theorem 1.0.4 is repeatedly used in our text in order to generalize a criteria

on polarization from projective case to the local case i.e subsets of the affine

space, Cn. It plays a crucial rule in the proof of the main contribution 8.6.1,

or its applications in 9.1 and 9.4.

Brieskorn considered the OT -modules

H ′′ = f∗
Ωn+1
X

df ∧ d(Ωn−1
X )

; H ′ = f∗
Ωn+1
X

dΩn
X + df ∧ Ωn

X

(1.18)

of rank µ, such that

9



Chapter 1. Introduction

H ′|T ′ = H ′′|T ′ = H. (1.19)

The Gauss-Manin system associated to the Milnor fibration of f has a

canonical filtration due to Malgrange-Kashiwara, namely V -filtration in-

dexed by α ∈ Q, cf. Chap. 6. It is characterized by the properties;

t.V α ⊂ V α+1, ∂t.V
α ⊂ V α−1 and the operator t∂t − α is nilpotent on

GrαV . Using the V -filtration on the Gauss-Manin module; we may define

two Hodge filtrations on Hn(X∞,C) by

F pHn(X∞,C)λ = ψ−1
α (

V α ∩ ∂n−pt H ′′0
V >α

), α ∈ (−1, 0] (1.20)

F pV aH
n(X∞,C)λ = ψ−1

α (
V α ∩ t−(n−p)H ′′0

V >α
), α ∈ (−1, 0] (1.21)

namely Steenbrink-Scherk and Varchenko Hodge filtrations respectively; Know-

ing that V −1 ⊃ H ′′0 , and 0 = Fn+1 = Fn+1
V a . The maps ψα, where α’s

are logarithms of eigen-values of the monodromy; are the nearby maps, cf.

Chap 6 sec. 1, introduced by P. Deligne. These two filtrations together with

the weight filtration W• define two Hodge structures on Hn(X∞,C), [H3].

Varchenko proved that the two Hodge filtrations agree for curve singularities

and quasi-homogeneous singularities. In the general case he showed that the

two Hodge filtrations agree on GrWHn(X∞), [SC1], [H3].

1.0.3 Main results

For a holomorphic germ f : (Cn+1, 0) → (C, 0) with an isolated critical

point; the local residue

g 7−→ Res0

[
gdx

∂f
∂x0

... ∂f∂xn

]
:=

1

(2πi)n+1

∫
Γε

gdx
∂f
∂x0

... ∂f∂xn

.

induces a bilinear form Resf,0 on

Ωf := Ωn+1
Cn+1,0

/df ∧ Ωn
Cn+1,0

10
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resf,0 : Ωf × Ωf → C

(g1dx, g2dx) 7−→ Res0

[
g1g2dx
∂f
∂x0

... ∂f∂xn

]
,

defines a symmetric bilinear pairing (Grothendieck pairing), which is non-

degenerate (proved by Grothendieck). If ω and η are (n + 1)-differential

forms, after division by df each of the forms ω and η define a middle di-

mensional cohomology class of every local level hyper-surface of the function

f .

Assume f : Cn+1 → C is a germ of isolated singularity. Suppose,

Hn(X∞,C) =
⊕
p,q,λ

(Ip,q)λ (1.22)

is the Deligne-Hodge C∞-splitting, and generalized eigen-spaces. Consider

the isomorphism obtained by composing the three maps,

Φp,q
λ : Ip,qλ

Φ̂λ−→ Grα+n−p
V

pr−→ Gr•VH
′′/∂−1

t H ′′ ∼= Ωf (1.23)

where

Φ̂p,q
λ := ∂p−nt ◦ ψα|Ip,qλ

Φ =
⊕

p,q,λ Φp,q
λ , Φp,q

λ = pr ◦ Φ̂p,q
λ

where Ip,q stands for the bigrading cf. 3.3.3, ∂t is the Gauss-Manin connec-

tion, and ψα is defined in section 6.1. In section 8.5 we define a MHS on Ωf

by this isomorphism.

Theorem 1.0.5. [1] Assume f : (Cn+1, 0)→ (C, 0), is a holomorphic germ

with isolated singularity at 0. Then, the isomorphism Φ makes the following

diagram commutative up to a complex constant;

R̂esf,0 : Ωf × Ωf −−−−→ Cy(Φ−1,Φ−1)

y×∗
S : Hn(X∞)×Hn(X∞) −−−−→ C

∗ 6= 0 (1.24)

11



Chapter 1. Introduction

where,

R̂esf,0 = resf,0 (•, C̃ •)

and C̃ is defined relative to the Deligne decomposition of Ωf , via the iso-

morphism Φ. If Jp,q = Φ−1Ip,q is the corresponding subspace of Ωf , then

Ωf =
⊕
p,q

Jp,q C̃|Jp,q = (−1)p (1.25)

In other words;

S(Φ−1(ω),Φ−1(η)) = ∗ × resf,0(ω, C̃.η), 0 6= ∗ ∈ C (1.26)

Let f be the nilpotent operator on Ωf corresponding to N = log(Mu) via

the isomorphism Φ. Define the primitive components;

PGrWl := ker(fl+1 : GrWl Ωf → GrW−l−2Ωf )

The induced form on W -graded pieces;

R̂esl : PGrWl Ωf ⊗C PGr
W
l Ωf → C (1.27)

is non-degenerate and according to Lefschetz decomposition we will obtain

a set of positive definite bilinear forms,

R̂esl ◦ (id⊗ fl) : PGrWl Ωf ⊗C PGr
W
l Ωf → C, (1.28)

Theorem 1.0.6. Assume f : Cn+1 → C is a holomorphic isolated singu-

larity germ. The modified Grothendieck residue R̂es provides a polarization

for the extended fiber Ωf , via the isomorphism Φ. Moreover there exists a

set of forms {Resk} polarizing the primitive subspaces of GrWk Ωf providing

a graded polarization for Ωf .

Corollary 1.0.7. The polarization S of Hn(X∞) will always define a polar-

ization of Ωf , via the isomorphism Φ. In other words S is also a polarization

in the extension, i.e. of Ωf .

12
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Using this corollary and summing up all the results obtained above, we can

give the following picture for the extension of PVMHS associated to isolated

hypersurface singularity.

Theorem 1.0.8. Assume f : Cn+1 → C is a holomorphic hypersurface germ

with isolated singularity at 0 ∈ Cn+1. Then the variation of mixed Hodge

structure defined in 4.2 is polarized by 5.2.2. This VMHS can be extended

to the puncture with the extended fiber isomorphic to Ωf in the sense of 8.4

and 8.5, and it is polarized by 8.7.4. The Hodge filtration on the new fiber

Ωf correspond to an opposite Hodge filtration on Hn(X∞,C) in the way

explained in 8.5.3.

Corollary 1.0.9. (Riemann-Hodge bilinear relations for Grothendieck residue

on Ωf ) Assume f : Cn+1 → C is a holomorphic germ with an isolated sin-

gularity. Suppose f is the corresponding map to N on Hn(X∞), via the

isomorphism Φ. Define

Pl = PGrWl := ker(fl+1 : GrWl Ωf → GrW−l−2Ωf )

Going to W -graded pieces;

R̂esl : PGrWl Ωf ⊗C PGr
W
l Ωf → C (1.29)

is non-degenerate and according to Lefschetz decomposition

GrWl Ωf =
⊕
r

frPl−2r

we will obtain a set of non-degenerate bilinear forms,

R̂esl ◦ (id⊗ fl) : PGrWl Ωf ⊗C PGr
W
l Ωf → C, (1.30)

R̂esl = resf,0 (id⊗ C̃. fl) (1.31)

where C̃ is as in 8.6.1, such that the corresponding hermitian form associated

to these bilinear forms is positive definite. In other words,

• R̂esl(x, y) = 0, x ∈ Pr, y ∈ Ps, r 6= s

13
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• If x 6= 0 in Pl,

Const× resf,0 (Clx, C̃. f
l.x̄) > 0

where Cl is the corresponding Weil operator.

An application of a theorem of E. Cattani-A. Kaplan-W. Schmid in

[CKS], deduces the existence of a nilpotent transformation δ ∈ g = gl(HC),

such that the operator

C̃1 := Ad(e−i.δ).C̃ = Ad(ei.δ).C̃, Ad(g) : X 7→ gXg−1, Ad : G→ Gl(g)

is a real transformation (notation of theorem 8.6.1).

Proposition 1.0.10. The bi-grading Jp,q1 defined by Jp,q1 := e−i.δ.Jp,q is

split over R. The operator C̃1 = e−i.δ.C̃ : Ωf → Ωf defines a real structure

on Ωf .

This says if Ωf,1 = ⊕p<qJp,q1 then

Ωf = Ωf,1 ⊕ Ωf,1 ⊕
⊕
p

Jp,p1 , Jp,p1 = Jp,p1

The statement of theorem 1.0.4 is valid when the operator C̃ is replaced

with C̃1;

S(Φ−1(ω),Φ−1(η)) = ∗ × resf,0(ω, C̃1.η), 0 6= ∗ ∈ C (1.32)

and this equality is defined over R. The concept of this result should be

understood as a matter of representation theory in relation with sl2-orbit

theorem. It provides an sl2-triple for Ωf , cf. sec. 8.8. The above form also

polarizes the complex variation of Hodge structure studied by G. Pearlstein

and J. Fernandez, cf. [P2], see also Chap 9 sec. 3.

14
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Theorem 1.0.11. Let V be an admissible variation of polarized mixed Hodge

structure associated to a holomorphic germ of an isolated hyper-surface sin-

gularity. Set

U ′ = F∨∞ ∗W. (1.33)

Then U ′ extends to a filtration U ′ of V by flat sub-bundles, which pairs with

the limit Hodge filtration F of V, to define a polarized C-variation of mixed

Hodge structure, on a neighborhood of the origin. As a consequence, the

mixed Hodge structure on the extended fiber Ωf defined by (1.23) can be

identified with

Φ(U ′ = F∨∞ ∗W )

where A ∗B =
∑

r+s=q Ar ∩Bs for two filtrations A and B.

We apply the above result to the extensions of Jacobian bundle associ-

ated to a projective family of curves. For this we define;

As = J1(H1
s ) = H1

s,Z \H1
s,C/F

0H1
s,C

J(H) =
⋃
s∈S∗

J1(Hs)

to be the family of Jacobians associated to the variation of Hodge structure

in a projective degenerate family of algebraic curves (here we have assumed

the Hodge structures have weight -1).

The extended Jacobian simply is

J0 = J1(Ωf ) = Ωf,Z \ Ωf/F
0Ωf

Theorem 1.0.12. The extension of a degenerate 1-parameter holomorphic

family of Θ-divisors polarizing the Jacobian of curves in a projective fibra-

tion, is a Θ-divisor polarizing the extended Jacobian.

Following the work of C. Sabbah in [SA4], we formulate the following ver-

sion of his results for regular admissible PVMHS with quasi-unipotent mon-

odromy.

15
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Theorem 1.0.13. Assume (G, F,W,H, S) is a polarized MHM (hence reg-

ular holonomic) with quasi-unipotent underlying variation of mixed Hodge

structure H, defined on a Zariski dense open subset U of an algebraic mani-

fold X. Then, G has a smooth extension to all of X and the extended MHM

is also polarized. The polarization on the fibers can be described by residues

of the Mellin transform of a formal extension of the polarization S over the

elementary sections, by the two formulas

ψλS〈
p∑
l=0

ml ⊗ eα,l,
p∑
l=0

ml ⊗ eα,l〉 = ∗. Ress=α〈S̃, |t|2sdt ∧ dt̄〉, ∗ 6= 0, α 6= 0

φ1S(•, •̄) = ∗. Rest=−1〈S̃, |t|2sFlocdt ∧ dt̄〉, ∗ 6= 0

.

Summarizing Theorems 1.0.2, 1.0.3, 1.0.4 and 1.0.5 we conclude with the

following theorem.

Theorem 1.0.14. Assume (G, F,W,H) be a polarized MHM with underly-

ing admissible variation of mixed Hodge structure H, defined on a Zariski

dense open subset U of an algebraic manifold X. Assume X \ U = D is a

normal crossing divisor defined by a holomorphic germ f . Then the extended

MHM is polarized and in a neighborhood of D, the polarization of the exten-

sion of H is given either by a sign modification of the Grothendieck residue

associated to the holomorphic germ f locally defining the normal crossing

divisor or the usual residues of moderate extension of polarization as Theo-

rem 1.0.5. Moreover, the Hodge filtration on the extended fibers are opposite

to the limit Hodge filtration on H. These Hodge filtrations pair together to

constitute a polarized complex variation of HS.

Theorem 1.0.12 generalizes as follows.

Theorem 1.0.15. The limit of the Poincare product on the canonical fibers

of the Neron model of a degenerate admissible variation of Hodge structure H

is given by the modification of the residue pairing or induced by the residues

16
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as in 1.0.12. The extension describes the limit Jacobians as the Jacobian of

the Opposite Hodge filtration on H.

We also provide with an application to positivity results in algebraic

geometry of singular varieties in section 9.4. By a hyper-surface ring we

mean a ring of the form R := P/(f), where P is an arbitrary ring and f a

non-zero divisor. Localizing we may assume P is a local ring of dimension n+

1. Assume P = C{x0, ..., xn} and f a holomorphic germ, or P = C[x0, ..., xn]

and then f is a polynomial with isolated singularity. We shall assume f has

an isolated singularity at 0 ∈ Cn+1. It is a basic fact, discovered by D.

Eisenbud, that the R-modules have a minimal resolution that is eventually

2-periodic. Specifically, In a free resolution of such a module M , we see that

after n-steps we have an exact sequence of the following form.

0→M ′ → Fn−1 → Fn−2 → ...→ F0 →M → 0 (1.34)

where the Fi are free R-modules of finite rank and depthR(M ′) = n.

M. Hochster in his study of direct summand conjecture defined the fol-

lowing invariant namely Θ-invariant. The theta pairing of two R-modules

M and N over a hyper-surface ring R/(f) is

Θ(M,N) := l(TorR2k(M,N))− l(TorR2k+1(M,N)), k >> 0

This definition makes sense as soon as the length appearing are finite. This

certainly happens if R has an isolated singular point.

Theorem 1.0.16. Let S be an isolated hypersurface singularity of dimen-

sion n over C. If n is odd, then (−1)(n+1)/2Θ is positive semi-definite on

G(R)Q, i.e (−1)(n+1)/2Θ(M,M) ≥ 0.

1.0.4 Organization of the text

Chapter 1 is an introduction to the whole text and contains some historical

remarks. We also briefly list the main results of the thesis in this Chapter.

Chapter 2 contains definitions and basic properties of Hodge structures

and also their variations. We provide a step by step explanation of the

17
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fundamental tools in Hodge theory and provide elementary examples. In

successive sections we explains local systems, Gauss-Manin connections and

Deligne intermediate extension. A brief explanation of the global and lo-

cal invariant cycle theorem is also given. We end up this chapter with the

theorem of Lefschetz on (1, 1) classes. In Chapter 3 the limit mixed Hodge

structure is introduced following W. Schmid in [SCH]. We explain the Nilpo-

tent orbit theorem in one variable which also belongs to W. Schmid. This

chapter contains fundamental theorems for the proof of Riemann-Hodge bi-

linear relations (Theorem 3.2.1). The Deligne-Hodge bigrading of a mixed

Hodge structure with its basic properties is explained in this part. We

briefly express the sl2-orbit theorem of W. Schmid and Mixed Hodge Metric

theorem. The Chapter ends with a description on Higgs bundles and their

relation with the variation of Hodge structures. In chapter 4 we explain

the special case of variation of mixed Hodge structure associated to isolated

hypersurface singularities. It concerns the major point important to us. We

explain how the Steenbrink limit MHS is defined on vanishing cohomology

of these fibrations. In chapter 5 we explain basic bilinear forms relevant

to Milnor fibrations and specially to that of isolated singularities. Some

examples of these forms are also given for convenience.

Chapter 6 is fundamental in the text. We develop the needed tools

in order to present the main contributions in Chapter 8. In this part the

V -filtration, Brieskorn lattice, the weight and Hodge filtrations of Gauss-

Manin system and the spectral pairs are defined. We give another definition

of Steenbrink limit mixed Hodge structure equivalent to that presented in

chapter 4. In Chapter 7 the case of quasi-homogeneous fibrations is discussed

as an example to what introduced Chapters 4 and 6. Some basic examples

are also listed for more conveniences.

Chapters 8 and 9 contain the main contributions namely Theorems 8.6.1

and 8.7.1 with successive corollaries on a formulation of Riemann-Hodge bi-

linear relations for Grothendieck residue pairing. Specifically we give a stan-

dard method to calculate a signature for this form in section 9.1. Chapter

9 mainly investigates the applications of Theorems 8.6.1 and 8.7.1 and ex-

plains their relations with other known facts already studied by other people.
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In chapter 10 we give more comments for further studies. In section 10.1 a

discussion on primitive elements is given. We have provided a summary of

the work of K. Saito on higher residue pairing. Section 10.3 presents some

generalizations of the result for arbitrary admissible PVMHS. We formulate

a polarization version of hermitian duality studied by C. Sabbah and D.

Barlet.
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Basics on Hodge theory

2.1 Hodge Theory of Compact Riemann Surface

For a compact connected Riemann surface X of genus g, the cohomology

group H1(X,Q) = Q2g admits a new structure as follows. First, Poincarè

duality induces a skew symmetric non-degenerate bilinear form

(•, •) : H1(X,Q)×H1(X,Q)→ H2(X,Q)

∫
[X]→ Q. (2.1)

We have dimH1(X,OX) = g. The Serre duality,

H1(X,OX) ' H0(X,Ω1
X)∨

also gives dimH0(X,Ω1
X) = g. That implies the Hodge decomposition

H1(X,C) = H0,1(X)⊕H1,0(X)

H0,1(X) = H1(X,OX), H1,0(X) = H0(X,Ω1
X).

If we regard Serre duality as a pairing

H1,0 ⊗H0,1 •∧•−→ H1,1
∫
→ C, (2.2)

it is equivalent to the complexified Poincarè duality

(•, •)C : H1(X,C)⊗C H
1(X,C)→ C. (2.3)

Since (H1,0, H1,0) = 0 and (H0,1, H0,1) = 0.

Thus the matrix of this pairing with respect to some normalized basis be-

comes
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(•, •)C ↔

(
0 −In
In 0

)
.

With respect to the real structure H1(X,C) = C ⊗R H
1(X,R), H1,0 is

conjugate to H0,1, and using Serre duality we get a ses-quilinear pairing

k : H1,0 ⊗C H
1,0 → C, (α, β) 7→ α ∧ β̄. (2.4)

Then the Hodge-Riemann bilinear relations assert that h =
√
−1.k is a

positive definite hermitian form, [SA1]. The definition of a Hodge structure

is an abstract version of this example.

2.2 Hodge Structures

In the following sections, the basic definitions and examples of Hodge theory

concepts are given, [G2].

Definition 2.2.1. A Hodge structure of weightm is given by a data (HQ, F
p)

where HQ is a finitely generated Q-vector space, and F p, p = (0, ...,m)

is a decreasing filtration on the complexification H = HQ ⊗ C such that

F p ⊕ Fm−p+1 ∼= H, for all p.

Setting Hp,q = F p ∩ F̄ q, the condition is equivalent to

H =
⊕

p+q=m

Hp,q, Hp,q = H̄q,p. (2.5)

The relation between them is F p = ⊕p′≥pHp′,m−p′ . We shall use the ab-

breviation HS for Hodge structures. A sub-Hodge structure is given by a

sub-vector space H ′ such that F ′p = H ′ ∩ F p, (H ′, F ′p) is again a Hodge

structure.

Example 2.2.2. (1) Let HC = C2 = Ce1+Ce2 and set H1,0 = C(e1−ie2)

and H0,1 = C(e1 + ie2). This gives a Hodge structure of weight 1.
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(2) sl(2,C) : The lie algebra sl(2,C) carries a HS of weight 0.

The elements

Z =

(
0 i

i 0

)
, X+ =

(
−i 1

1 i

)
, X− =

(
i 1

1 −i

)

span sl2. They satisfy

[Z,X+] = 2X+, [Z,X−] = −2X−, [X+, X−] = Z

Z̄ = −Z, X̄+ = X−.

Setting,

sl(2,C)−1,1 = sl(2,C)1,−1 = C(iZ +X− +X+)

sl(2,C)0,0 = C(X+ −X−)

Provides a HS.

(3) The one dimensional complex vector space C, with the obvious real

structure carries a unique Hodge structure of weight −2, where F−1 =

C. Deligne denoted it by Q(1), and called it the Hodge structure of

Tate. For n ≥ 0;Q(n), will be the n-th symmetric power of Q(1), and

Q(−n) the dual of Q(n).

(4) Let e1 and e2 be the standard basis of C2. For p 6= q, we define a Hodge

structure E(p, q) of weight p+ q on C2, with natural real structure by

requiring that v+ = e1 + ie2 of type (q, p), and v− = e1 − ie2 of type

(p, q).

Definition 2.2.3. A polarized Hodge structure of weight m is given by the

data (HQ, F
p, Q) where (HQ, F

p) is a Hodge structure of weight m and

Q : HQ ⊗HQ → Q (2.6)

is a bilinear form satisfying the conditions
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• Q(u, v) = (−1)mQ(v, u)

• Q(F p, Fm−p+1) = 0

• The Hermitian formQ(Cu, v̄) is positive definite where Cu = (
√
−1)p−qu, u ∈

Hp,q.

A sub-Hodge structure of a polarized Hodge structure is again polarized

as its orthogonal w.r.t Q, and the original HS is a direct sum of the sub-

Hodge structure and its orthogonal.

Example 2.2.4. In Example (1) defining (e1, e2) = 1, (ei, ei) = 0, i = 1, 2;

provides a polarization on the Hodge structure.

Example 2.2.5. Q(n) has a natural polarization. The bilinear form Q on

C2 defined by

Q(v+, v+) = 0, Q(v−, v−) = 0, Q(v+, v−) = 2ip−q

polarizes E(p, q).

Theorem 2.2.6. (W. Hodge) (see [SP] Theorem 1.8) The cohomology group

Hm(X,Q) of a compact Kahler manifold has a canonical Hodge structure of

weight m.

By definition this means we have decomposition

Hm(X,C) =
⊕

p+q=m

Hp,q, Hq,p = Hp,q

for all 0 ≤ m ≤ dim(X). Assume ω ∈ H2(X,C) is the Kahler class of

X.

Theorem 2.2.7. (Hard Lefschetz Theorem)(see [SP] Theorem 1.30) For

any Kahler manifold (X,ω), cup product with the Kahler class ω induces

isomorphisms

. ∧ ωn−m : Hm → H2n−m, m ≤ n

. ∧ ωn−(p+q) : Hp,q → Hn−q,n−p, p+ q ≤ n

23



Chapter 2. Basics on Hodge theory

For m ≤ n = dim(X) the primitive subspace is defined by;

PHm(X,Q) = ker(Hm(X,Q)
∧ωn−m+1

−→ H2n−m+2(X,Q)) (2.7)

and it has an induced Hodge decomposition

PHm =
⊕

p+q=m

PHp,q, PHq,p = PHp,q

The primitive decomposition theorem says

Hm(X,Q) =
⊕
k

ωk.PHm−2k(X,Q)

Hp,q(X,Q) =
⊕
k

ωk.PHp−k,q−k(X,Q)

Definition 2.2.8. The operator

C : Hm =
⊕

p+q=m

Hp,q → Hm =
⊕

p+q=m

Hp,q, C|Hp,q = ip−q

is called the Weil-operator.

Theorem 2.2.9. (Riemann-Hodge bilinear relations for the cohomology of

Kahler manifolds)(see [SP] Theorem 1.33) Assume (X,ω) is a Kahler man-

ifold. Then the Hodge structure on the cohomologies Hm(X,Q) is polarized

by

Q(u, v) = (−1)m(m−1)/2

∫
X
u ∧ v ∧ ωn−m. (2.8)

and satisfies the following properties;

• Q(Hp,q, Hr,s) = 0 if (r, s) 6= (p, q)

• Q(C.u, ū) > 0 if u 6= 0

where C is the Weil-operator.

The two conditions in the theorem are called Riemann-Hodge bilinear re-

lations. The primitive cohomologies are the basic building blocks of the

cohomology of a smooth projective variety.

24



Chapter 2. Basics on Hodge theory

2.3 Mixed Hodge structures

Definition 2.3.1. A mixed Hodge structure is given by the data (HQ,Wm, F
p)

where {Wm} is increasing (namely weight) filtration and F p, a decreasing

(called Hodge) filtration;

... ⊆Wm ⊆Wm+1 ⊆ ... ⊂ HQ

defined over Q, and the Hodge filtration

... ⊆ F p ⊆ F p−1 ⊆ ... ⊆ HC

defined on H = HQ ⊗C where the filtrations FP (GrWm ) induced by F p give

a Hodge structure of weight m. If the pure Hodge structures on GrWmH are

polarized by Qm, as in 2.2.3, for all m, we say the mixed Hodge structure is

polarized. It is also called graded Polarized MHS.

General examples of mixed Hodge structure are given by the cohomolo-

gies Hk(X,C) of a complex variety, where the weights satisfy 0 ≤ m ≤ 2k.

Theorem 2.3.2. (P. Deligne) [D1] The complex cohomology groups of a

complex quasi-projective variety carry mixed Hodge structures which are

functorial. In case of a non-singular projective variety these mixed Hodge

structures reduce to the ordinary HS of pure weight.

Remark 2.3.3. ForX smooth but possibly not complete the weight satisfies

k ≤ m ≤ 2k, while for X complete but possibly singular they satisfy 0 ≤
m ≤ k. These mixed Hodge structures are functorial.

A morphism of MHS’s of type (r, r) between (HQ,Wm, F
p) and (H ′Q,W

′
l , F

′q)

is a linear map

L : HQ → H ′Q

satisfying L(Wm) ⊆ W ′m+2r, L(F p) ⊆ F ′p+r, and such a morphism is then

strict in the sense that L(F p) = F ′p+r ∩ Im(L) and similarly for the weight

filtration. For a pair Y ⊆ X of complex algebraic varieties, the relative
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cohomologies Hk(X,Y ) have mixed Hodge structures and the long exact

sequence of the pair will be an exact sequence of MHS’s. The category of

mixed Hodge structures is abelian, Moreover, it is closed under the opera-

tions of direct sum, tensor product, and dual.

Definition 2.3.4. We say a mixed Hodge structure (H,W,F ); of weight

m ∈ Z is polarized by N , where N is a (−1,−1)-morphism N ∈ g ∩
gl(HQ), g = End(HC), If it is equipped with a non-degenerate rational

bilinear form Q such that:

• Nm+1 = 0

• W = W (N)[−m], where W [−k]l = Wl−k

• Q(F p, Fm−p+1) = 0

• The Hodge structure of weight m + l induced by F on kerN l+1 :

GrWm+l → GrWm−l−2 is polarized by Q(., N l.).

Remark 2.3.5. By W (N) we refer to the corresponding nilpotent operator

N . It refers to the next proposition.

Proposition 2.3.6. (Jacobson-Morosov)(see [SA1] page 12) Let HQ be a

vector space with a nilpotent transformation N . There exists a unique in-

creasing filtration of HQ indexed by Z, called the monodromy filtration rela-

tive to N and denoted by W (N) satisfying the following properties;

• For any l ∈ Z, N(Wl) ⊂Wl−2

• For any l ≥ 1, N l induces an isomorphism GrWl HQ
∼=−→ GrW−lHQ.

We provide a more complete form to 2.3.6 in 3.1.2. However for the purpose

of this chapter we gave the above elementary version to handle some basic

definitions.

Example 2.3.7. X singular and compact: [DU] Let X = X1 ∪X2 with

X1, X2 two projective non-singular varieties intersecting transversely. In

the Meyer-Vietoris sequence;
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βm−1→ Hm−1(X1 ∩X2)
δ→ Hm(X)

α→ Hm(X1)⊕Hm(X2)
βm→ Hm(X1 ∩X2)→

(2.9)

where δ is the connecting homomorphism, and all maps are morphisms of

Hodge structures. The first term has pure weight m − 1 and the last two

terms have pure weight m. Define the weight filtration on Hm(X) by;

Wm−2 = 0, Wm−1 = im(δ), Wm = Hm(X). (2.10)

Then, Wm−1/Wm−2
∼= im(δ) ∼= coker(βm−1) has a Hodge structure of

weight m − 1, and Wm/Wm−1
∼= ker(βm) has a Hodge structure of weight

m, since the kernel and cokernel of a map of Hodge structures have a Hodge

structure.

The cohomology of X can be computed by forms on the disjoint union of

X1 and X2 which agree on X1 ∩ X2. Let the Hodge filtration on Hm(X)

be induced by the usual filtration on this complex of forms. For example,

when dim(X1) = dim(X2) = 1, the exact sequence is

0→ H̃0(X1 ∩X2)→ H1(X)→ H1(X1)⊕H1(X2)→ 0 (2.11)

where H̃ is the reduced cohomology, and H1(X) has classes of two types:

those of weight 1, which lie in one of the Xi’s and naturally have types

(1, 0) and (0, 1), and those of weight 0 and type (0, 0), which come from the

intersection of X1 and X2 via the Meyer-Vietoris sequence.

Example 2.3.8. X open and smooth: [DU] Let Z be a smooth projective

variety and D ⊂ Z is a smooth co-dimension one sub-variety. We will find

the mixed Hodge structure on the cohomology of the open smooth space

X = Z − D. The cohomology of X can be computed using the de Rham

complex of smooth forms, So let F p ⊂ Hm(X) be those cohomology classes

which can be represented by forms with p or more dz’s. Now, let us find the

weight filtration. Let i : X ⊂ Z be the inclusion. In the Gysin sequence
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→ Hm−2(D)
γm→ Hm(Z)

i∗→ Hm(X)
R→ Hm−1(D)

γm+1→ Hm+1(Z)→ (2.12)

The group Hm−2(D) has a pure Hodge structure of weight m − 2 and the

group Hm(Z) has a Hodge structure of weight m. Furthermore, the Gysin

map γm takes a form of type (p, q) to a form of type (p + 1, q + 1) , the

restriction i∗ preserves the Hodge filtration, and the residue map R has the

property that R(F p) ⊂ F p−1 since it removes a factor of dz/z. Now, let

change the Hodge filtration on Hm−2(D) by refining a class of type (p, q) to

be of type (p+ 1, q + 1). Then Hm−2(D) has pure HS of weight m, and γm

is a morphism of HS, and R now takes F p to F p. We can now define the

weight filtration on Hm(X) by

Wm−1 = 0, Wm = im(i∗), Wm+1 = Hm(X). (2.13)

Then Wm/Wm−1 = im(i∗) = coker(γm), has a Hodge structure of weight m

since Hm(Z) does, and Wm+1/Wm = ker(γm+1) has a Hodge structure of

weight m + 1 since Hm−1(D) does. Furthermore, both these Hodge struc-

tures are the same as the ones induced by the Hodge filtration on Hm(X).

For example, when Z is a smooth connected curve and D = {p1, ..., pk} is a

collection of points, the sequence is

0→ H1(Z)→ H1(X)→ H̃0(D)→ 0. (2.14)

The classes of weight 1 (type (1, 0) or (0, 1)) in H1(X) are restrictions of

the classes in H1(Z). The classes of weight 2 are represented by linear

combinations of the forms dz/(z − p1), ..., dz/(z − pk) and have type (1, 1).

Example 2.3.9. Logarithmic de Rham Complex: (P. Deligne) [D1]

Let D = ∪Di be a normal crossing divisor in a smooth proper algebraic

variety X, and U = X − D. The de Rham complex with logarithmic sin-

gularities along D namely; Ω•X(log(D)) ⊂ i∗Ω
•
U , where i : U ↪→ X is the

inclusion, is defined as follows. Assume D is given locally by an equation
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z1....zr = 0. Locally, Ωk
X(log(D))|U is the free OU -module generated by

dzi1
zi1
∧ ... ∧ dzil

zil
∧ dzj1 ∧ ... ∧ dzjr , where l + r = k.

The weight filtration W is given by

WmΩp
X(logD) =


0 for m < 0

Ωp
X(logD) for m ≥ p

Ωp−m
X ∧ Ωm

X(logD) if 0 ≤ m ≤ p

The Hodge filtration is given by the truncations of the logarithmic de Rham

complex;

F pΩ•X(logD) := Ω•≥pX (logD)

Theorem 2.3.10. (P. Deligne) [D1] The followings are true,

•
Hk(X,Ω•X(log(D))) ∼= Hk(U,C)

• The two filtrations W and F defined by

WmH
k(U,C) = Im(Hk(X,Wm−kΩ

•
X(logD))→ Hk(U,C))

F pHk(U,C) = Im(Hk(X,F pΩ•X(logD))→ Hk(U,C))

put a mixed Hodge structure on Hk(U).

Example 2.3.11. gl(V): Given a MHS on VC, we may define a MHS on

gl(VC) by :

Wagl := {X ∈ gl : X(Wl) ⊂Wl+a}

F bgl := {X ∈ gl : X(F p) ⊂ F p+b}.

An element T ∈ (W2a ∩ F agl) ∩ gl(VQ) is called an (a, a)-morphism.
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2.4 Variation of Hodge Structure

Definition 2.4.1. A variation of Hodge structure (VHS) is given by the

data (S,HQ,F
p,∇) where

• S is a smooth complex algebraic variety.

• HQ is a local system of Q-vector spaces on S.

• H = HQ ⊗ OS is a holomorphic vector bundle with a filtration Fp by

holomorphic sub-bundles.

• ∇ : H→ Ω1
S ⊗H is an integrable connection.

and where the conditions

• ∇HQ = 0

• For each s ∈ S , on each fiber the induced data (HQ,s,F
p
s) gives a

Hodge structure of weight m, and

• The transversality conditions

∇Fp ⊆ Ω1
S ⊗ Fp−1 (2.15)

are satisfied.

There is also the notion of polarized variation of Hodge structure given by

the additional data of

Q : HQ ⊗HQ → Q (2.16)

satisfying ∇Q = 0 and inducing polarized Hodge structure on each fiber.

The basic example of a variation of Hodge structure is the cohomol-

ogy along the fibers Xs = π−1(s) of a smooth family X → S of compact

complex manifolds, where X is Kahler and where HQ = Rmπ∗Q, F ps =

F pHm(Xs,C).
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Consider the 1-parameter degenerating family

X −−−−→ X̄y y
S −−−−→ S̄

(2.17)

where S̄ = |s| < 1 is a disc, and S = S̄ − 0 a punctured disc, X, X̄,Xs are

smooth for s 6= 0. Then there is a monodromy transformation M : HZ →
HZ, HZ = Hm(Xs0 ,Z). It is known that, after possibly passing to a finite

covering of S, we have

(M − I)m+1 = 0. (2.18)

Setting N = log(Mu) where M = Ms.Mu is the Jordan decomposition; a

weight filtration can be defined on HZ by the conditions

• N : Wk →Wk−2

• Nk : GrWm+k → GrWm−k is an isomorphism.

Letting s = exp(
√
−1.t) where Im(t) > 0; in the early 1970’s, W. Schmid

proved that

lim
Im(t)→∞

exp(−tN)F ps =: F p∞

exists and that (HQ,Wk, F
p
∞) gives a polarized MHS on Hm(Xs0 ,C), relative

to which N is a morphism of type (−1,−1), [SCH].

2.5 Invariant cycle theorem

Consider the surjective algebraic map π : X → S where X is a projective

variety and S a smooth projective curve. It possibly has a finite number of

critical values. Let

S∗ = S − { critical values of π},
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X∗ = π−1(S∗),

Xt = π−1(t), for t 6= 0,

and let i : Xt ↪→ X∗, j : X∗ ↪→ X be the inclusions. Consider the map

Hm(X)
j∗→ Hm(X∗)

i∗→ Hm(Xt)

The fundamental group π1(S∗) acts on Hm(Xt). Let Hm(Xt)
π1(S∗) denote

the elements invariant under this action. It lies in the image of i∗ in Hm(Xt).

Theorem 2.5.1. (Global invariant cycle theorem) (see [SP] cor. 1.40)

Hm(Xt)
π1(S∗) is the image of i∗ ◦ j∗. In other words for all t ∈ S, the

invariants in Hm(Xt,C) under the monodromy action come from restric-

tion of global sections on X.

Note that a class in Hm(Xt)
π1(S∗) is of pure weight m, and hence pulls

back under i∗ to a class of pure weight m (i∗ strictly preserves the weight

filtration). As X is a compactification of X∗, all classes of weight m on X∗

are restrictions of classes on X, [DU], [SP] cor. 1.40.

Localizing the above situation near a degenerate point 0 ∈ S and us-

ing Hironaka theorem for resolution of singularities, one has the following

commutative diagram,

X∞ −−−−→ U −−−−→ X ←−−−− E

f∞

y yf yf y
H

e−−−−→ ∆∗ −−−−→ ∆ ←−−−− 0

(2.19)

where H is the upper half plane, e is the exponential map and X∞ :=

X ×∆∗ H. E is a normal crossing divisor.

Theorem 2.5.2. (Local invariant cycle theorem) (see [SP] Theorem 11.43)

There is an exact sequence for all k,

Hk(E,Q)→ Hk(X∞,Q)
M−I−→ Hk(X∞,Q)

In other words the invariant cycles in the generic fiber X∞ are the classes

in the image of the first map.
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2.6 Local systems

A local system of K-vector spaces, over a complex manifold S is sheaf L

locally isomorphic to a constant sheaf with stack Kn for a fixed n, where K
is an arbitrary field. We only consider local systems over the fields C, R, Q.

Fix a point s0 ∈ S, then for any curve γ : [0, 1] → B, γ(0) = s0, γ(1) = s1,

the pull back γ∗(L) to [0, 1] is locally constant. Thus, we get a C-vector

space isomorphism

τγ : Ls1 → Ls0 . (2.20)

It depends only on the homotopy class of the path γ. Taking closed loops

based on s0, we obtain a representation:

ρ : π1(B, s0)→ Gl(Ls0) ∼= Gl(n,C) (2.21)

If S is connected this construction is independent of the base point s0, up

to conjugation.

Conversely, if we begin from the representation ρ, and let S̃ be the universal

cover of S; then define the vector bundle H→ S by

H := S̃ × Cn/ ∼,

(s̃, v) ∼ (σ(s̃), ρ(σ−1)(v)), σ ∈ π1(S)

where σ acts as a covering deck transformation. The sheaf of constant local

sections of H gives L. In this way there is a 1-1 correspondence between the

local systems on S and representations of π1(S, ∗), [C1].

Example 2.6.1. [C1]

Let S = T ′ := {z ∈ C : 0 < |z| < 1 < r}. For t0 = 1 ∈ T ′, we

have π1(T ′, t0) ' Z; where we choose as generator a simple loop c oriented

clockwise. Let

ρ : π1(T ′, t0) ∼= Z→ Gl(2,C) (2.22)

where
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ρ(n) =

(
1 n

0 1

)
.

Recalling that the upper half plane H = {z = x + ix ∈ C : y > 0} is the

universal cover of T ′ with projection z → exp(2πiz), we have a commutative

diagram

H × C2 −−−−→ H ∼= H × C2/ ∼ypr1 y
H

exp(2πi•)−−−−−−→ T ′.

(2.23)

Let N be the nilpotent transformation

N =

(
0 n

0 0

)
.

Then for any v ∈ C2, the map ṽ : T ′ → H defined by

ṽ(t) := [
log t

2πi
, exp(

log t

2πi
N).v] ∈ H × C2/ ∼ (2.24)

is a section of a vector bundle H. We can write

ṽ(t) = exp((log t/2πi)N).ṽ, (2.25)

where v̂(t) is the constant section defined on a neighborhood of t. This

example may be generalized to an arbitrary nilpotent transformation N ∈
gl(H) if we define

ρ : π1(T ′, t0)→ Gl(H) (2.26)

by ρ(c) = exp(N), where c is again a simple clockwise loop. And also may be

generalized to higher dimensions when, {N1, ..., Nr} ∈ gl(H) are commuting

nilpotent transformations, by considering S = (T ′)r and
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ρ : π1((T ′)r, t0) ∼= Zr → Gl(H) (2.27)

the representation that maps the j-th standard generator of Zr to Mj =

expNj .

A general example is the cohomology group of the generic fiber of a

proper smooth map f : X → S of complex manifolds, namely Hk(Xt) as

in 2.4. We denote this local system by Hk(X/S) = Rkf∗CX . according to

some fundamental theorems this local system underlies a variation of mixed

Hodge structure. We will explain these theorems in the next chapters. Such

variations are called geometric.

2.7 Gauss-Manin connection

The concept of connection on analytic manifolds is a generalization of a

system of n linear first order differential equations.

Definition 2.7.1. Let E be a holomorphic vector bundle on a complex

manifold S. A connection on E is a C-linear map

∇ : E → Ω1
S ⊗C E (2.28)

satisfying;

∇(f.φ) = df ⊗ φ+ f∇φ (2.29)

for all sections f of OS and φ of E, known as Leibnitz condition.

Similarly, ∇ can be defined on differential forms in degree p as a C-linear

map

∇p : E ⊗ Ωp
S → E ⊗ Ωp+1

S .

satisfying the Leibnitz rule. The connection is said to be integrable if the

curvature ∇1 ◦ ∇0 = 0. In this case the de Rham complex associated to ∇,

is
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DR(E) := (Ω•S ⊗ E,∇) : E
∇−→ Ω1

S ⊗ E → ...→ Ωp
S ⊗ E

∇p−→...→ Ωn
S ⊗ E.

Proposition 2.7.2. The horizontal sections E∇ of a connection ∇ on E

are defined as the solutions of the differential equation on X

E∇ = {φ : ∇(φ) = 0}.

When the connection is integrable, E∇ is a local system of dimension rank(E).

Locally on an open chart U for E, the connection is given by;

∇U = d+AU∧

where AU is a matrix of differential forms (Aij)i,j∈[1,m] called the connection

matrix. This may be proved by choosing a frame of E over U . If (x1, ..., xn)

is a coordinate system on U , then one may write

ωi,j =
∑
k∈[1,n]

Γkij(x)dxk.

So that the equation of coordinates of the horizontal sections is given by the

linear partial differential equations

∂yi
∂xk

+
∑

j∈[1,m]

Γkij(x)yj = 0

The solutions form a local system of dimension m (the Frobenius condition

is satisfied), [BZ], [SP] sec. 10.4.

Theorem 2.7.3. (Riemann-Hilbert Correspondence) (see [SP] Theorem 11.7)

The functor (E,∇) → E∇ is an equivalence between the category of

integrable connections on vector bundles on a manifold S, and the category

of complex local systems on S.

Remark 2.7.4. A section s of the vector bundle E is called a flat section

of the connection ∇, if ∇s = 0. The connection ∇ is called flat if there

is a trivialization of E, for which the corresponding frame consists of flat

sections.
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Theorem 2.7.3 says that, there is a 1-1 correspondence between the local

systems on S and flat connections on vector bundles over S, as is the same

with finite dimensional representations of π1(S, ∗).
Let L be a local system on S and E = L ⊗ OS a locally free sheaf (vector

bundle) of holomorphic sections of L. By theorem 2.7.3 there is a unique

connection ∇ : E → Ω1
S ⊗ OS such that L is its kernel, i.e. ∇(L) = 0 called

Gauss-Manin connection. It is simply defined by

∇(g.s) = dg.s, g ∈ OS , s ∈ Γ(E) (2.30)

Example of this is Hk
DR(X/S) = Rkf∗(Ω

•
X/S) associated to the local system

encountered at the end of previous section. In this case the Gauss-Manin

connection satisfies

∇(F pHk) ⊂ Ω1
S ⊗ F p−1Hk

called Griffiths transversality. Such Gauss-Manin systems are also called

Hodge modules. A Hodge module always carries a weight and a Hodge

filtration with the appropriate property mentioned.

2.8 Period map

Consider a family π : X → S such that X ⊂ PN , that each fiber Xt is

a smooth projective variety. The chern class of the hyper-plane bundle

restricted to X gives integral Kahler classes ωt ∈ H1,1(Xt) ∩ H2(Xt,Z)

which fit together to define a section of the local system R2π∗Z over S. On

each fiber Xt we have a Hodge decomposition:

Hk(Xt,C) =
⊕
p+q=k

Hp,q(Xt) (2.31)

where Hp,q(Xt) ∼= Hp,q

∂̄
(Xt) ∼= Hq(Xt,Ω

p
Xt

) is the space of Dolbeault coho-

mology classes. The Hodge numbers hp,q(Xt) = dimHp,q(Xt) are constant.
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We have

F p(Xt) :=
⊕
a≥p

Ha,k−a(Xt) (2.32)

which satisfies the condition Hk(Xt,C) = F p(Xt)⊕ F k−p+1(Xt). Therefore

we obtain a local system which also defines a holomorphic vector bundle Hk

over S.

Set fp =
∑

a≥p h
a,k−a. Assume that S is contractible and X is C∞ trivial

over S. Fix also a t0 ∈ S. Then we have diffeomorphisms gt : Xt0 → Xt

g∗t : Hk(Xt,C)→ Hk(Xt0 ,C). (2.33)

This allows us to define a map

Φp : S → Grass(fp, Hk(Xt0 ,C)), Φp(t) = g∗t (F
p(Xt)) (2.34)

Theorem 2.8.1. (K. Kodaira) (see [C1]) The period map Φp is holomor-

phic.

By the following theorem the above construction defines a variation of Hodge

structure on S, cf. def. 2.4.1.

Theorem 2.8.2. (Griffiths Transversality) (see [C1], [SCH] Theorem 2.13)

Let π : X → S be a projective family and let (Hk,∇) denote the holomorphic

vector bundle with the flat Gauss-Manin connection. Let σ ∈ Γ(S,Fp) be a

smooth section of the holomorphic subbundle F ⊆ Hk, then for any (1, 0)-

vector field V on S,

∇V (σ) ∈ Γ(S,Fp−1). (2.35)

The classifying space D, consists of all decreasing filtrations F of H such

that (H,F ) is a Hodge structure, polarized by Q and

dimC F
p =

∑
r≥p

hr,r−k (2.36)
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To obtain a complex structure on D, one may regard it as an open subset

of ’compact dual’ Ď. Assume GR := Aut(Q,R). It is a basic linear algebra

that GR acts transitively on D. If we define Ď as those filtration that only

satisfy Q(F p, F k−p+1) = 0, then naturally D ↪→ Ď as an open submanifold

of the complex manifold Ď. The equation hF (u, v) := S(C.u, v̄) defines a

hermitian metric on D which is GR-invariant, called Hodge metric ,cf. [C1],

[P1], [P3].

Family of algebraic manifolds usually have singular fibers. By Hironaka

a suitable modification turns the ambient space into a manifold, and the

sub-variety in question into a divisor with at most normal crossings. Thus,

localizing the problem one can assume; the period map is defined on a

products of puncture discs and discs. The mapping, by its very definition

takes values in the quotient of a classifying space for Hodge structures,

modulo a discrete group of automorphisms [C1], [SCH], see also 1.0.1 the

discussion on period map.

Thus, we consider period maps

Φ : (4∗)r ×4n−r → D/Γ (2.37)

or their liftings

Φ̃ : Hr ×4n−r → D (2.38)

where H is the upper half plane. By the monodromy theorem (Theorem

3.1.1), the monodromy transformations Mj , j = 1, ..., r are quasi-unipotent,

that is, there exist integers νj such that (M
νj
j − id) is nilpotent (see theorem

3.1.1). Set Mj,u = eNj : j = 1, ..., r, where Nj are nilpotent. For simplicity

assume r = n. We then have, [C1],

Φ̃(z1, ..., zj + 1, ..., zr) = exp(Nj)Φ̃(z1, ..., zj+1, ..., zr) (2.39)

and the map Ψ : Hr → Ď defined by
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Ψ(z1, ..., zr) := exp(−
r∑
j=1

zjNj)Φ̃(z1, ..., zr) (2.40)

is the period map and is the lifting of a holomorphic map ψ : (4∗)r → D;

ψ(t1, ..., tr) = Ψ(
log t1
2πi

, ...,
log tr
2πi

). (2.41)

Example 2.8.3. [KU]

Take

H0 = Q2 = Qe1 + Qe2.

Let W be the increasing filtration

W−2 = 0 ⊂W−1 = H0.

Let (e1, e2)−1 = 1, where the sub-index means the corresponding W -graded

levels, and let

h−1,0 = h0,−1 = 1, and let hp,q = 0 for all other (p, q).

For τ ∈ C let

F (τ)1 = 0 ⊂ F (τ)0 = C(τe1 + e2) ⊂ F (τ)−1 = H0,C.

Then D = H the upper half plane, where τ is corresponded to F (τ).

A map θ : Cr → Ď of the form

θ(z) = exp(
∑

ziNi).F

where F ∈ Ď, and Ni being commuting set of nilpotent elements, such that

there exists an α ∈ R with θ(z) ∈ D for Im(zi) > α is called a nilpotent

orbit.

Theorem 2.8.4. (Nilpotent Orbit Theorem - W. Schmid) ([SCH] Theorem

4.9 and 4.12)

Let Φ : (4∗)r ×4n−r → D be a period map, and let N1, ..., Nr be mon-

odromy logarithms. Let
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ψ : (4∗)r ×4n−r → Ď (2.42)

be as above; then

• The map ψ extends holomorphically to (4)r ×4n−r.

• For each w ∈ 4n−r, the map θ : Cr ×4n−r → Ď given by

θ(z, w) = exp(
∑
zjNj).ψ(0, w)

is a nilpotent orbit. Moreover, for, w ∈ C a compact subset, there

always exists α > 0 such that θ(z, w) ∈ D for Im(zj) > α.

• For any G-invariant distance on D, there exists positive constants β,K

such that for Im(zj) > α,

d(Φ(z, w), θ(z, w)) ≤ K
∑
j

(Im(zj))
βe−2πIm(zj). (2.43)

Moreover, the constants α, β,K depend only on the choice of the metric

d and the weight and Hodge numbers used to define D. They may be

chosen uniformly for w in a compact subset.

Given a period map Φ : (4∗)r → D/Γ, we will call the value

Flim := ψ(0) ∈ Ď (2.44)

the limiting Hodge filtration. Flim depends on the choice of coordinates on

(4∗)r. Indeed a change of coordinates compatible with divisor structure,

must be after relabeling if necessary, of the form (t̂1, ..., t̂r) = (t1f1(t), ..., trfr(t))

where fj are holomorphic around 0 ∈ 4r, fj(0) 6= 0. Then after letting

t→ 0, [C1],

F̂lim = − 1

2πi

∑
j

log(fj(0))Nj .Flim. (2.45)
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Theorem 2.8.5. Let θ(z) = exp(
r∑
j=1

zjNj).F be a nilpotent orbit. Then,

• Every element in the cone

C := {N =
r∑
j=1

λj .Nj ;λj ∈ R>0} ⊂ g

defines the same weight filtration W (C).

• The pair (W (C[−k], F ) defines a MHS polarized by every N ∈ C.

Example 2.8.6. [C1]

(1) A Hodge structure of weight 1 is just a complex structure on HR, that

is a decomposition HC = H1,0 ⊕ H1,0. The polarization Q is a non-

degenerate alternating form and the polarization conditions reduce to:

Q(H1,0, H1,0) = 0; iQ(u, ū) > 0, if 0 6= u ∈ H1,0

It follows that there exists a basis {w1, ..., w2n} ofHC such that {w1, ..., wn}
is a basis of H1,0, and in this basis the form Q is written in the form:

Q =

(
0 −iIn
iIn 0

)

The subgroup of invertible transfortions on H preserving such bilinear

form is by definition the Symplectic group Sp(n,C. On the other

hand we can choose our basis so that wn+i = w̄i and consequently,

the group of real transformations G = Sp(n,R) acts transitively on

our classifying space D. The isotropy group at some point Ω0 ∈ D,

consists of real transformations in Gl(HR) which preserve a complex

structure and hermitian form in the resulting n-dimensional complex

vector space. Hence, Stab(Ω0) = U(n) and

D = Sp(n,R)/U(n).

42



Chapter 2. Basics on Hodge theory

Geometrically, the weight 1 case correspond to the Hodge structure on

the cohomology H1(X,C) of a smooth algebraic curve X. Hence, the

classifying space for Hodge structures of weight 1 is the Siegel upper

half space.

(2) In the weight 2 case, dim(H) = 2h2,0 + h1,1, Q is a non-degenerate

symmetric form defined over R, So we get the complex Lie group

G = O(2h2,0 + h1,1,C). Given a reference polarized Hodge structure

HC = H2,0
0 ⊕H1,1

0 ⊕H0,2
0 ; H0,2

0 = H2,0
0

The real vector space decomposes as

HR = (H2,0
0 ⊕H1,1

0 ) ∩HR)⊕ (H0,2
0 ∩HR)

and the form Q is positive definite on first summand and negative

definite on the second. Hence, G = O(2h2,0, h1,1). On the other

hand the elements that fix the reference Hodge structure must preserve

each summand of the second decomposition. Hence, we get Stab =

U(h2,0)×O(h1,1), and

D = O(2h2,0, h1,1)/U(h2,0)×O(h1,1).

2.9 Deligne Canonical extention

The nilpotent orbit theorem guarantees that the holomorphic bundle arising

from a VHS can extend to the singular locus. Assume (H,∇) is an analytic

vector bundle with an integrable connection on a complex manifold S, with

S ↪→ S̄ as a Zariski open dense submanifold. Choose a multivalued flat

frame (A1(z), ..., An(z)) for Hp over a small neighborhood of p ∈ S̄−S. Let

M = Ms.Mu be the Jordan decomposition of a monodromy around p, where

Ms = diag(dk) is the semi-simple and Mu is uni-potent upper-triangular.

Set N = −1
2πi logMu. Let

si(A)(z) = exp(N log(z)).Ai(z)
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si(A)(z) is a single valued section of H over U . Furthermore, {si(A)}1≤i≤n
provide a frame for a holomorphic extension H̄ of the bundle. For the same

reason when S is higher dimensional, and D = S̄ − S =
⋃
Dj is a normal

crossing divisor only, and when all the monodromy transformations around

Dj are quasi-unipotent, then the local system has a canonical extension

to D, which is compatible with integral structures. It is characterized by

the fact that, in a local basis around 0, the matrix of 1-forms defining the

connection has logarithmic poles along sj = 0, with nilpotent residues. The

canonical extension depends on the choice of log branch. we summarize all

of these in the following theorem;

Theorem 2.9.1. ([SA1] sec 22.b) If we are given (H,∇) on S with D =

S̄ − S normal crossing, there exists a unique meromorphic extension, called

Deligne meromorphic extension, of the bundle H to a meromorphic bundle

H̃ (that is a free sheaf of OS̄ [log(D)]-modules), equipped with a connection

(by Riemann-Hilbert correspondence) such that the coefficients of any multi-

valued horizontal section of H̃ are multi-valued functions on S with moderate

growth on D.

2.10 The Lefschetz theorem on (1,1)-classes

Assume X is a compact Kahler manifold. We have the Hodge decomposition

Hn(X,C) =
⊕
p+q=n

Hp,q(X)

Hn(X,R) = (
⊕
p+q=n
p≤q

Hp,q(X)⊕Hq,p) ∩Hn(X,R).

A natural question is whether we can characterize geometrically the classes

in homology that are Poincarè dual to classes in one of these factors. For

instance, consider a homology class Γ ∈ H2p(X,Z) that is a rational linear

combination of fundamental classes of analytic sub-varieties of dim = p of

X and denote its Poincarè dual by ηΓ. If ψ is any differential form, then∫
Γ
ψ =

∫
Γ
ψn−p,n−p.
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Thus, if η is the harmonic form on X representing the Poincarè dual ηΓ, and

ψ is any harmonic form,∫
Γ
ψ ∧ η =

∫
Γ
ψ =

∫
Γ
ψn−p,n−p =

∫
Γ
ψ ∧ ηp,p

that is η = ηp,p, and we see that any cohomology class of degree 2p is of

pure type (p, p). The famous Hodge conjecture asserts that the converse is

also true: On X ⊂ PN a rational cohomology class of type (p, p) is Poincarè

dual to some rational divisor. The only case which this conjecture has been

proved in general is the case p = 1.

Theorem 2.10.1. (Lefschetz theorem on (1,1)-classes) ([G3] page 163) For

X ⊂ PN a sub-manifold, every cohomology class

γ ∈ H1,1(X) ∩H2(X,Z).

is Poincarè dual of some rational divisor;

γ = ηD.

When X is a complex projective variety, then the cycle class map is

c : CHk(X)→ H2n−2k(X),

Γ 7−→ ηΓ

The cycle class is easily seen to be a Hodge class; that is to belong to

H2k(X) ∩ Hk,k(X). The famous Hodge conjecture asserts that H2k(X) ∩
Hk,k(X) is equal to im(c) ⊗ Q. The Lefschetz theorem 2.10.1 is the only

case of Hodge conjecture that is proved generally.
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Limit Mixed Hodge structure

As mentioned in section 2.8 a family of polarized algebraic manifolds parametrized

with a holomorphic projective map f : X → T gives rise to a family of Hodge

structures Ft on Hn(Xt,C), and a period map φ : T → D/Γ, where Γ is the

monodromy group.

The idea of limit mixed Hodge structure is to replace all the Hodge

structures Ft with a canonical one namely the limit Hodge structure, de-

noted Flim, or F∞. There exist three equivalent ways to define F∞ in the

Hodge theory literature. The first which is due to W. Schmid is based on

the nilpotent orbit theorem. This what we do in this chapter in the first

section. The second method belongs to J. Steenbrink that uses the Hironaka

resolution of singularities, and we explain this in 7.4. The third method that

is mainly the content of the technical part of this text is explained in Chap.

6 and is developed in Chap. 8. Through all of this chapter unless otherwise

stated, we assume f : X → T is a family of projective algebraic manifolds,

and T is the disc, and X ′ = X \X0 → T ′ = T \ 0 is a C∞-fibration. This

assumption is specifically fixed through the whole sections 3.1 and 3.2. We

propose to give a proof of 3.2.1.

3.1 Limit Hodge filtration

Suppose f : X → T is a family of projective varieties, where f : X ′ →
T ′ is smooth. Then, π1(T ′) acts on the cohomology group of a general

fiber Xt = f−1(t). Denote by M a monodromy i.e. the action of some

generator of this group. Let M = MsMu be the Jordan decomposition into

semi-simple and uni-potent part of monodromy. Ms is a diagonal matrix

whose diagonal entries are eigenvalues of M . Mu is has only eigen-value
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1, and is upper-triangular obtained from dividing each Jordan block by its

appropriate eigenvalue.

Theorem 3.1.1. (Monodromy theorem) (see [SP] Theorem 11.8, [SCH]

Theorem 6.1) The eigenvalues of M are m− th root of unity, for a suitable

integer m, so that Mm
s = 1. Let l be the largest number of successive non-

zero Hodge subspaces of Hk(Xt,C). In other words, l is the largest integer

that for some p, H i,k−i(Xt,C) 6= 0, if p ≤ i ≤ p+ l. Then (Mu−1)l = 0 and

hence (Mm−1)l = 0. Specifically, (Mm−1)l = 0, for l ≤ min(k, 2n−k)+1.

Assume N : H → H is a nilpotent transformation, Nk+1 = 0. The following

theorem is crucial in the study of existence of polarization for VHS.

Proposition 3.1.2. ([SCH] p. 247) There exists a unique filtration

0 ⊆W0 ⊆W1 ⊂ ..... ⊆W2n−1 ⊆W2n = H (3.1)

such that N(Wl) ⊆Wl−2, and such that

N l : Grk+lW∗ → Grk−lW∗ (3.2)

is an isomorphism , for each l ≥ 0, GrlW∗ = Wl
Wl−1

. If l ≥ k let Pl ⊆ Gr(W∗)
be the kernel of

N l−k+1 : GrlW∗ → Gr2k−l−2W∗ (3.3)

and set Pl = 0, l < k, then one has the decomposition

GrlW∗ =
⊕

N i(Pl+2i), i ≥ max(k − l, 0) (3.4)

If N is an infinitesimal isometry of a non-degenerate symmetric or skew

symmetric form S on H. i.e if S(Nu, v)+S(u,Nv) = 0 for all u, v ∈ H, the

filtration 3.1 becomes self dual, in the sense that each Wl is the orthogonal

complement of W2k−l−1. In this situation, the spaces GrW∗ carry non-

degenerate bilinear form Sl which are uniquely determined by the following

requirements.
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If l ≥ k and if u, v ∈ Wl represent ũ, ṽ ∈ GrlW
∗, Sl(ũ, ṽ) = S(u,N l−kv),

if l < k , and N l−k is to be an isometry from Gr2k−lW∗ to GrlW∗. The

decomposition (3.4) then becomes orthogonal w.r.t Sl. Whenever S is sym-

metric and k− l even, or S skew-symmetric and k− l odd; Sl is symmetric.

Sl is skew-symmetric in the remaining cases.

Finally, if ψ is a representation of a 3-dim algebra g with generators X+, X−, Z

on H, with ψ(X+) = N . Each Wl coincides with linear sum of the eigen-

spaces of ψ(Z) which belong to eigenvalues less or equal than l − k and

Pl is the isomorphic image in GrW∗ of the kernel of ψ(X−)l−k+1 on the

(l − k)-subspace of ψ(Z).

The proof is based on the following fact on representation theory of sl2.

Let g a three dimensional complex Lie algebra with generators Z,X+, X−

satisfying

[Z,X+] = 2X+, [Z,X−] = 2X−, [X+, X−] = Z (3.5)

Lemma 3.1.3. ([SCH] p. 247) Every finite dimensional representation of

g is fully reducible. Let ψ : g→ End(H) be an irreducible representation of

g on an (n + 1)-dimensional vector space H. Then ψ(Z) acts semi-simply

, with eigenvalues n, n − 2, n − 4, ...,−n, each with multiplicity one. The

l-eigenspace of ψ(Z) maps onto the (l+ 2)-eigenspace By ψ(X+), except for

l = −n − 2. Similarly, for l 6= n + 2 , ψ(X−) maps the l-eigenspace onto

(l − 2)-eigenspace.

If ψ is a representation of g on H with ψ(X−) = N , the last statement

of the lemma suggests how the filtration Wl should be constructed. Such

a representation always exists. An example of such representation is the

cohomology group of a compact Kahler manifold, where the Kahler operator

L is adjoint to Λ and their commutator B = [L,Λ] satisfies

[B,L] = 2L, [B,Λ] = −2Λ, [L,Λ] = B (3.6)

and these three operators span a lie algebra isomorphic to g.
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Let σ : H → T ′ be the universal covering of the punctured disk. Hk
C

pulls back to a trivial bundle on H with fiber Hk
C. For each z ∈ H, there

is a natural identification between Hk
C and Hk(Xt,C) with t = σ(z). By

transforming the Hodge filtration via this identification one obtains Hodge

filtrations

HC = F 0
z ⊇ F 1

z ⊇ .... ⊇ F p−1
z ⊇ ... ⊇ 0. (3.7)

Let N = log(Mu). Then

z 7−→ exp(−zN)F pz (3.8)

considered as a mapping of H to an appropriate Grassmann variety is in-

variant under the transformation z → z+m. Because the Lefschetz decom-

position is always compatible with action of monodromy, the nilpotent orbit

theorem guarantees the existence of the limit

F∞z = lim
Im(z)→∞

exp(−zN)F pz (3.9)

uniformly in Re(z). The resulting filtration

HC = F 0
∞ ⊇ F 1

∞ ⊇ .... ⊇ F p−1
∞ ⊇ ... ⊇ 0 (3.10)

is called the limit Hodge filtration. It should be pointed out that the fil-

tration F •∞ depends on the choice of the coordinate t on the disk T . Pass-

ing from one local coordinate to another has the effect of replacing the

filtration F p∞ by exp(λN)F p∞. However, the filtrations induced on the ker-

nel and cokernel of N and quotients of weight filtrations are canonical. If

L : Hk
C → Hk+2

C is the Kahler operator, then it commutes with M and

hence, also with N . Since it maps F pz to F pz+1 for any z ∈ U , it raises the

index of weight filtration by 2 and the index of F •∞ by one.

Theorem 3.1.4. ([SCH] p. 255) The two filtrations {WL} and {F p∞} de-

termine a MHS on Hk
C w.r.t which N is a morphism of type (−1,−1), and

the Kahler operator L is a morphism of type (1, 1). In particular the MHS
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of Hk
C restricts to the primitive part P kC ⊆ Hk

C. The induced Hodge struc-

ture of weight l on Grl(P
k
C ∩W∗) further restricts to a Hodge structure on

Pl ⊆ P kC ∩W∗ which are polarized with respect to the non-degenerate bilinear

form Sl on Pl.

The next theorem shows the compatibility of the limiting MHS with that

induced on the primitive components.

Theorem 3.1.5. ([SCH] p. 256) Let P kC ⊂ Hk
C, be the primitive part and

suppose that, the classifying space for the Hodge structures on P kC happens

to be hermitian symmetric (i.e. a connected hermitian manifold with a sym-

metry sP fixing a point P , that is s2
P = 1). Then for every z ∈ H, the

upper half plane, with sufficiently large imaginary part, the two filtrations

{F pz ∩P kC}, and {Wl ∩P kC}, determine a mixed Hodge structure on P kC. The

resulting Hodge structure of pure weight l on Grl(W ∩P kC), viewed as a func-

tion of z, has a limit as Im(z) → ∞. The limit coincides with the Hodge

structure of weight l induced by the filtration {F p∞ ∩ P kC}.

3.2 Polarization for Projective family

In this part we use the theorems of W. Schmid mentioned in the previ-

ous section in order to prove the Riemann-Hodge bilinear relations in the

variation of hodge structure associated to a projective family, [JS1], [JS2].

Consider the projective family Xt defined by a hyper-surface germ. Let

L be the cohomology class of a hyperplane section of Xt, t 6= 0. Set X∞ :=

X ×T ′ H where H is the upper half plane. Equip Hk(X∞,C) with the limit

mixed Hodge structure (F∞,WL) as previous section. We consider L as an

element of H2(X∞) by means of the natural map ψt : H2(Xt)→ H2(X∞).

On the primitive subspaces P k(X∞) consider the bilinear form

Q(x, y) =

∫
Xt

(−1)k(k−1)/2in−kψ−1
t (x ∧ y). (3.11)

Then Q does not depend on the choice of t. Because L is an M -invariant

class, P k(X∞) ⊂ Hk(X∞) also carries a mixed Hodge structure, and for all

r ≥ 0 one has
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GrWk+rP
k(X∞) ∼= GrWk−rP

k(X∞). (3.12)

Denote

Pk,r(X∞) = ker(N r+1 : GrWk+rP
k(X∞)→ GrWk−rP

k(X∞)). (3.13)

Then Pk,r(X∞) carries a Hodge structure of weight k + r. Let

Pk,r(X∞) =
⊕

a+b=k+r

P a,bk,r (X∞) (3.14)

be its Hodge decomposition. Denote Qr the bilinear form on Pk,r(X∞) de-

fined by Qr(x, y) = Q(x̃, N rỹ), where x, y ∈ Pk,r(X∞) and x̃, ỹ are elements

of Wk+rP
k(X∞) whose classes mod Wk+r−1 are x, y respectively. The fact

that N is an infinitesimal isometry implies that Qr is well-defined.

Theorem 3.2.1. (J. Steenbrink-W. Schmid)(see [JS2]) Assume f : X → S

be a family of projective manifolds. Equip the variation of Hodge structure

Hk(X∞,C) with the W. Schmid limit MHS (F∞,WL). Let Pk, Pk,r be the

primitive subspaces as defined above. Then the following holds,

• Qr(x, y) = 0 if x ∈ P a,bk,r (X∞), y ∈ P c,dk,r (X∞) and (a, b) 6= (c, d)

• ia−bQr(x, x̄) > 0 if x ∈ P a,bk,r (X∞), x 6= 0

Proof. This follows from Theorems 3.1.4, 3.1.5 and prop. 3.1.2.

3.3 Deligne-Hodge decomposition of MHS’s

In [P1], G. Pearlstein develops the ideas of W. Schmid, [SCH] into VMHS’s,

generalizing Schmid nilpotent orbit theorem and classifying space for MHS’s.

Definition 3.3.1. A graded polarization of a mixed Hodge structure (F,W )

consists of a choice of polarization Sk for each non-trivial layer GrWk .
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Example 3.3.2. [P1]

Let S be a finite number of points on a compact Riemann surface M . Let

Ω1
M (log(S)) be the space of meromorphic 1-forms on M which have at worst

simple poles along S. Then the mixed Hodge structure (F,W ) attached to

H1(M − S,C) is given by the following

W0 = 0, W1 = H1(M,C), W2 = H1(M − S,C)

F 2 = 0, F 1 = Ω1
M (log(S)), F 0 = H1(M − S,C).

The two bilinear forms

S2(α, β) = 4π2
∑

p∈S resp(α)resp(β), S1(α, β) =
∫
M α ∧ β

defined on GrW2 , and GrW1 respectively, provide a graded polarization of

H1(M − S,C).

Definition 3.3.3. (P. Deligne) A bi-grading of a mixed Hodge structure

(F,W ), is a direct sum decomposition V = ⊕p,qIp,q of the underlying com-

plex vector space which has the following two properties,

F p =
⊕
r≥p,s

Ir,s

Wk =
⊕
r+s≤k

Ir,s.

Lemma 3.3.4. (P. Deligne) Let (F,W ) be a mixed Hodge structure. Then

there exists a unique bi-grading {Ip,q} of (F,W ) with the following additional

properties.

Ip,q = Īq,p mod
⊕
r<p
s<q

Ir,s. (3.15)

The choice of a MHS (F,W ) on a space V = VQ⊗C induces a mixed Hodge

structure on gl(V ) via the bi-grading.

gl(V )r,s = {α ∈ gl(V )|α : Ip,q → Ip+r,q+s, ∀p, q} (3.16)
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Example 3.3.5. [P1] In the case of finitely punctured Riemann surface

M − S considered in Ex. 3.3.2, the Deligne-Hodge decomposition (F,W ) is

given by the following subspaces of H1(M − S,C):

I1,1 = F 1 ∩ F 1, I1,0 = H1,0(M), I0,1 = H0,1(M)

Definition 3.3.6. A mixed Hodge structure is said to split over R, if it

admits a bigrading {Ip,q} such that

Ip,q = Iq,p. (3.17)

In this case

VC =
⊕
k

⊕
p+q=k

Ip,q. (3.18)

is a decomposition of VC into direct sum of HS’s.

Example 3.3.7. [C1] The basic example of mixed Hodge structure split

over R is the Hodge decomposition on the cohomology of a compact Kahler

manifold X. Let

VQ = H∗(X,Q) =

2n⊕
k=0

Hk(X,Q)

and set

Ip,q = Hn−p,n−q(X).

Thus

Wl =
⊕

d≥2n−l
Hd(X,C), F p =

⊕
s

⊕
r≤n−p

Hr,s(X).

With this choice of indexing the operators Lω where ω is a Kahler class, are

(−1,−1)-morphisms of MHS. Using Hard Lefschetz theorem, the Riemann-

Hodge bilinear relations state that mixed Hodge structure is polarized of

weight n, by the rational bilinear form Q defined by

Q(α, β) = (−1)r(r+1)/2

∫
X
α ∧ β; α ∈ Hr, β ∈ Hn−r.
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3.4 Mixed Hodge metric

Mixed Hodge Metric is a theorem of A. Kaplan, explaining that the Ip,q-

decomposition of a polarized MHS is split over R. If (F,W ) be a mixed

Hodge structure, then there exists a unique functorial bi-grading,

V =
⊕
p,q

Ip,q (3.19)

of the underlying vector-space VC, such that

• F p =
⊕
a≥p

Ia,b

• Wk =
⊕
a+b≤k

Ia,b

• Ip,q = Iq,p mod
⊕

r<q,s<p

Ir,s.

Proposition 3.4.1. (A. Kaplan) [K] Let (F,W, S) be a graded polarized

mixed Hodge structure, with underlying vector space VC = VR ⊗ C. Then

there exists a unique positive definite hermitian inner product h on V with

following two properties:

(a) The bi-grading V = ⊕p,qIp,q is orthogonal with respect to h.

(b) If u, v are elements of Ip,q, then h(u, v) = ip−qS([u], [v̄]).

The associated mixed Hodge metric h is the unique hermitian inner

product on VC, which makes the associated bi-grading (3.19) orthogonal

and satisfies

h(u, v) = ip−q〈GrWp+qu,GrWp+qv̄〉p+q, u, v ∈ Ip,q (3.20)

The concepts of the period map and period domain of pure polarized

Hodge structure discussed in 1.0.1 and 2.8, can be generalized for mixed

Hodge structures. This naturally raises the question of possibility to gener-

alize the nilpotent orbit theorem of W. Schmid to mixed Hodge structure.
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Let M be this generalized period domain. M can be regarded as a subspace

of a flag variety. The afore-mentioned bilinear form defines a metric on the

period domain of the mixed Hodge structure, i.e. a hermitian form on its

tangent space. This means the trivial bundle V ×M → M inherits a her-

mitian structure, and this structure is via this identification. This metric is

GR = Aut(Q,R)-invariant, cf. [P1].

3.5 sl2-orbit Theorem for VHS’s

Let (W,F0) be a MHS on HC, split over R and polarized by F−1
0 g∩ gl(HQ).

Since W = W (N)[−k], the subspaces

Hl =
∑

p+q=k+l

Ip,q(W,F0), −k ≤ l ≤ k

constitute a bi-grading defined over R. Let Y be the linear map of multipli-

cation by l on Hl. Since NHl = Hl−2,

[Y,N ] = −2N .

Then there would exists anN+ ∈ g = gl(H), such that [Y,N+] = 2N+, [N+, N ] =

Y . One may define a homomorphism ρ : sl2 → gl(H), such that

ρ(X−) = N, ρ(X+) = N+, ρ(Z) = Y

Such a homomorphism is called Hodge at F ∈ D; if it is a morphism of

Hodge structures when g is equipped with filtration F .

Theorem 3.5.1. (sl2-orbit Theorem - W. Schmid) ([SCH] Theorem 5.3)Let

z → exp(z.N).F be a nilpotent orbit. Then there exists,

• A filtration F√−1 := exp(iN).F0 lies in D.

• A homomorphism ρ : sl(2,C)→ g, Hodge at F√−1.

• N = ρ(X−)

• A real analytic GR-valued function g(y), such that;
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• For y >> 0, exp(iy.N).F = g(y) exp(iyN).F0, where F0 = exp(−iN).F√−1.

• Both g(y) and g(y)−1 have convergent power series expansion at y =∞
of the form 1 +

∑
Any

−n with

An ∈Wn−1g ∩ ker(adN)n+1 (3.21)

The sl2-orbit theorem expresses some additional data that can be taken

out from a nilpotent orbit, i.e. the orbit a base point F ∈ Ď, that lies

in D from some point on. The choice of the function g characterizes a

distinguished orbit of polarized Hodge structures which are real split, i.e

can be written as direct sum of pure Hodge structures ( this is by the

representation ρ ). The concepts of this theorem should be understood as a

matter of representation theory, and can be applied to general period maps.

In section 8.7 we apply some ideas relevant to this theorem to the mixed

Hodge structure of isolated hypersurface singularities.

3.6 Variation of Polarized Mixed Hodge

Structures

In this section we try to generalize some of the previous concepts to Variation

of MHS’s.

Definition 3.6.1. [P1] A variation of graded polarized mixed Hodge struc-

ture (VGPMHS) H → S consists of a Q-local system HQ over S equipped

with

• A rational increasing weight filtration

0 ⊂ ...Wk ⊂Wk+1 ⊂ ... ⊂ HQ

by sub-local systems.

• A decreasing Hodge filtration
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0 ⊂ ...Fp ⊂ Fp−1 ⊂ ... ⊂ H = HC ⊗ OS

by holomorphic sub-bundles.

• Relative to the Gauss-Manin connection of V:

∇Fp ⊂ Ω1
S ⊗ Fp−1 (3.22)

• A collection of rational non-degenerate bilinear forms

Sk : GrWk (HQ)⊗GrWk (HQ)→ Q (3.23)

such that,

• For each integer k the triple (GrWk (HQ),FGrWk (HQ), Sk) define a vari-

ation of pure polarized Hodge structure of weight k.

The data of such variation may be effectively encoded in its monodromy

representation;

ρ : π1(S, s0)→ Gl(Hs0), Image(ρ) = Γ (3.24)

and its period map

φ : S → D/Γ (3.25)

To obtain such a reformulation, we may assume S to be simply-connected.

Trivialization of H relative to a fixed reference fiber H := Hs0 via parallel

transform will determine the following data

• A rational structure HQ on H.

• A rational weight filtration W on H.

• A variable Hodge filtration F (s) on H.
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• A collection of rational non-degenerate bilinear forms

Sk : GrWk ⊗GrWk → C (3.26)

of alternating parity (−1)k.

subject to the conditions

• The Hodge filtration F (s) is holomorphic and horizontal i.e.

∂

∂(s̄j)
F p(s) ⊂ F p(s), ∂

∂(sj)
F p(s) ⊂ F p−1(s) (3.27)

relative to any choice of holomorphic coordinates.

• Each pair (F (s),W ) is a mixed Hodge structure, graded polarized by

the bilinear form S.

Conversely, the above properties determine a VGPMHS. To extract a clas-

sifying space, note that by the properties, the graded Hodge numbers hp,q

of H are constant. Therefore the classifying space consists of all decreasing

filtrations F of H such that (F,W ) is a MHS, graded polarized by S and

dimC F
pGrWk =

∑
r≥p

hr,r−k (3.28)

To obtain a complex structure on D, one may regard it as an open

subset of ’compact dual’ Ď. More precisely one starts with a flag variety F̌

consisting of all decreasing filtrations F of H such that

dimF p = fp, fp =
∑
r≥p,s

hr,s (3.29)

To take account the filtration W , define D as the sub-manifold of F consist-

ing of all filtration F with additional property

dimF pGrWk =
∑
r≥p

hr,k−r (3.30)
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The equation hF (u, v) := S(C.u, v̄) defines a hermitian metric on D called

Hodge metric, In our case Mixed Hodge metric, [P1].

Given a VGPMHS; V→ S we may apply Deligne decomposition point-

wise, to get a C∞-decomposition

V =
⊕
p,q

Ip,q (3.31)

Example 3.6.2. [KU] Take

H0 = Q4 = Qe1 + ...+ Qe4.

Let

W−3 = 0 ⊂W−2 = Re1 ⊂W−1 = W−2 + Re2 + Re3 ⊂W0 = H0,R

and

(e4, e4)0 = 1, (e1, e1)−2 = 1, (e3, e2)−1 = 1.

where the sub-index correspond to W -grading. Choose,

h0,0 = h0,−1 = h−1,0 = h−1,−1 = 1, hp,q = 0 for all other p, q .

as Hodge numbers. Define the F -filtration is

F−1 = H0,C ⊃ F 0 = C(z1e1 + z2e2 + e3) + C(z2e1 + z3e2 + e4) ⊃ 0.

Then we have isomorphism of complex analytic manifolds

D = H × C3, D(grW ) = D(grW−1) = H

where H is the upper half plane.

3.7 Hodge sub-bundles and complex structure

We begin by the definition of a Higgs bundle,
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Definition 3.7.1. A Higgs bundle (E, ∂̄ + θ) consists of a holomorphic

vector bundle (E, ∂̄) endowed with an endomorphism valued 1-form

θ : E0(E)→ E0,1(E) (3.32)

which is both holomorphic and symmetric ( ∂̄(θ) = 0, θ ∧ θ = 0).

Let V be a variation of pure polarized Hodge structure arising from the

cohomology of a family of smooth non-singular projective varieties f : Y →
X. Then by virtue of the C∞-decomposition

V = ⊕p+q=kHp,q

underlying smooth vector bundle E = V ⊗ E0
X of V inherits an integrable

complex structure ∂̄ via the isomorphism

Hp,q =
Fp

Fp+1

and the holomorphic structure of Fp. Likewise the Kodaira-Spencer map

κp : Tp(X)→ H1(Yp,Θ(Yp))

defines a symmetric endomorphism valued 1-form θ on E via the rule

θ(ξ)(σ) = κp(ξ) ∪ σ. To prove that (E, ∂̄ + θ) is indeed a Higgs bundle,

observe that we may write the Gauss-Manin connection as

∇ = τ + ∂̄ + ∂ + θ,

relative to a pair of differential operators,

∂̄ : E0(E)→ ∂0,1(E), ∂ : E0(E)→ ∂1,0(E),

preserving the Hodge decomposition, and a pair of tensor fields

τ : Hp,q → E0,1 ⊗Hp+1,q−1

θ : Hp,q → E1,0 ⊗Hp−1,q+1.

Expanding out integrability condition ∇2 = 0 it follows that

∂̄2 = 0, ∂̄θ = 0, θ ∧ θ = 0
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This proves (E, ∂̄ + θ) is a Higgs bundle. Moreover, given any element

λ ∈ C∗, the map

f : V→ V f |Hp,q = λp

defines a bundle isomorphism

(E, ∂̄ + θ) = (E, ∂̄ + λ.θ).

Consequently, the isomorphism class of a Higgs bundle is the fixed point of

the C∗-action

λ : (E, ∂̄ + θ)→ (E, ∂̄ + λ.θ).

cf. [P1]. This shows the following fact;

Proposition 3.7.2. [P1] Every complex variation of pure Hodge structure

carries a natural Higgs bundle structure ∂̄+θ, invariant under the C∗ action.

By a complex variation we mean to forget about the real structure. More

generally we have the following

Proposition 3.7.3. [P1] A Higgs bundle defined over a compact complex

manifold X admits a decomposition into a system of Hodge bundles if and

only if

(E, ∂̄ + θ) = (E, ∂̄ + λθ)

for each element λ ∈ C∗.

3.8 Example

Consider the PVHS over T ′ the punctured disc in C, of weight 1 on H of

dim = 2n. Denote by Q the polarization form, and let

Φ : T ′ → D/Sp(HZ, Q)

be the corresponding period map. The monodromy logarithm satisfies, N2 =

0, and its weight filtration is
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W−1 = Im(N), W0 = ker(N).

Let Flim, be the limiting Hodge filtration. We have a bi-grading on HC;

HC = I0,0 ⊕ I0,1 ⊕ I1,0 ⊕ I1,1

defined by (W (N)[−1], Flim). The nilpotent transformation N maps I1,1

isomorphically onto I0,0, and vanishes on the other summands. The form

Q(., N.) polarizes the Hodge structure on grW2 , and hence defines a positive

definite hermitian form on I1,1. Similarly, Q polarizes the Hodge decompo-

sition on I0,1 ⊕ I1,0. Thus, there is a basis such that

N =


0 0 Iv 0

0 0 0 0

0 0 0 0

0 0 0 0



Q =


0 0 −Iv 0

0 0 0 −In−v
Iv 0 0 0

0 In−v 0 0


where v = dim I1,1. The limit Hodge filtration on I1,0 ⊕ I0,1 is given by the

subspaces spanned by the columns of 2n× n matrix

Flim =


0 0

0 iIn−v

0 0

0 In−v


.

The period map can be written as

Φ(t) = exp(
log t

2πi
.N). exp(Γ(t)).Flim

Φ(t) =

(
W (t)

In

)
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where

W (t) =

(
log t
2πi Iv +A11(t) A12(t)

AT12(t) A22(t)

)
with A11(T ), A22(t) symmetric, cf. [C1].
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Isolated hypersurface

singularities

A series of examples for variation of mixed Hodge structure is given by

families of analytic manifolds given by a germ of holomorphic function on

(Cn+1, 0). An interesting case where the associated VMHS is polarized is

when this germ has a unique isolated singular point at 0. Such a germ

far from the singular fiber defines a C∞-fibration, according to a theorem of

Milnor. By a well-known fact namely Finite Determinacy Theorem, [SCHU]

page 12, there always exists a coordinate change such that our germ becomes

a polynomial with degree as large as we like. We use this through the text,

without mentioning it.

4.1 Milnor fibration

Consider the isolated singularity germ,

f : Cn+1 → C, f(0) = 0. (4.1)

We take a sufficiently small ballB(0, ε) such that the spheres ∂B(0, ε′), ε′ < ε

are all transverse to f−1(t), t < ε. Then we put X = B(0, ε)∩f−1(4η = T ),

where η are taken sufficiently small. The fiber X0 has an isolated singularity

at 0. The restriction

f : X ′ = X \X0 → T ′ = T \ 0 (4.2)

is a locally trivial fibration namely Milnor fibration. The Milnor fibers f−1(t)

have the homotopy type of the wedge of µ spheres, where
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Chapter 4. Isolated hypersurface singularities

µ(f) = dimC
C{x0, ..., xn}

J(f)
, J(f) = (∂0f, ..., ∂nf)

The singular fiber is homeomorphic to the cone over the manifold L :=

S ∩X0 = ∂X0 , the link of the singularity, which is homotopy equivalent to

the complex manifold X0 − 0. By the triviality of the Milnor fibration near

the boundary, one can identify L with the boundary ∂X for t ∈ ∆∗. From

the homology sequence

0→ Hn(L)→ Hn(Xt)→ Hn(Xt, ∂Xt)→ Hn−1(L)→ 0 (4.3)

of the pair (Xt, ∂Xt) , we see that L has non-trivial homology only in degrees

n − 1, n and that these are put in duality by the intersection product.

we use the notation X∞ := Xt ×T ′ H, namely the canonical fiber, where

H := {z ∈ C| Im(z) > 0} is the upper half plane.

Naturally we construct the cohomology bundle

H :=
⋃
t∈T ′

Hn(Xt,C) (4.4)

which is a complex vector bundle admitting an integrable connection

∇d/dt = ∂t : H→ H (4.5)

which is holomorphic. One has H ∼= (OT ′)
µ and hence, (i∗H)0

∼= (i∗OT ′)
µ.

The connection ∇d/dt induces a differential operator

∂t : (i∗H)0 → (i∗H)0. (4.6)

P. Deligne introduced a C{t}[t−1]-vector space G ⊂ (i∗H)0 of dimension

µ, which is ∂t invariant and is a regular singular C{t}[t−1]-module as follows.

For ω ∈ Ωn+1
X , the Leray residue provides a holomorphic section

s[ω](t) = [
ω

df
|Xt ] = res

ω

(f − t)
∈ Ht (4.7)
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of H. When no ambiguity arises we omit the restriction symbol and simply

write ω/df through the text. Then, one can define

Cα := ker(t∂t − α)r ⊂ G, r >> 0. (4.8)

and

Hn(X∞,C)λ = ker(Ms − λ)r ⊂ Hn(X∞,C) (4.9)

to be the generalized eigne-spaces, where M is the monodromy. Let Mu

be the unipotent part of monodromy and N = log(Mu). Then for A ∈
Hn(X∞,C)λ and α ∈ Q with e−2πiα = λ, the section

s(A,α)(t) = tα exp(log t.
−N
2πi

).A(t) (4.10)

is well-defined, namely elementary sections of H. In this way we build a

map ψα : Hn(X∞,C) → (i∗H)0, with ψα(A) := (i∗s(A,α))0. It gives an

isomorphism

ψα : Hn(X∞,C)λ → Cα ⊂ G (4.11)

where Cα is the image of Hn(X∞,C)λ. The map ψα fulfills the properties;

(t∂t−α)◦ψα = ψα◦(−N/2πi), t◦ψα = ψα+1. They build up the isomorphism

ψ =
⊕

−1<α≤0

ψα : Hn(X∞,C) =
⊕

−1<α≤0

He−2πiα

C →
⊕

−1<α≤0

Cα (4.12)

such that the monodromy M on Hn(X∞,C) corresponds to exp(−2πi.t∂t)

on
⊕

−1<α≤0

Cα. It holds that t : Cα → Cα+1 is always bijective and ∂t : Cα →

Cα−1 is bijective for α 6= 0. Then we have

G =
⊕

−1<α≤0

C{t}[t−1]Cα. (4.13)

Theorem 4.1.1. ([SC2] cor. 3.8) The connection ∂t : G → G is regular
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singular at 0, i.e. has a pole of order at most 1 at 0.

4.2 MHS on Cohomology of Milnor fiber

Assume f : X → T is a Milnor fibration. By the finite determinacy theo-

rem, with a suitable coordinate change one can embed the fibration into a

projective one πf = fY : Pn+1 → C such that:

• f is a polynomial of sufficiently high degree, say d = deg f

• Zero is the only singular point of the closure Y0 of f−1
Y (0) in Pn+1(C)

• The closure Yt of f−1(t) in Pn+1(C) is smooth for t ∈ T ′.

Remark 4.2.1. The 0 mentioned in the second item is different from the

the origin in Cn+1. It would lie in a hyperplane in Pn+1

We obtain a locally trivial C∞-fibration πf : Y ′ → T ′ with

F (z0, ..., zn+1) = zdn+1f(z0/zn+1, ..., zn/zn+1),

Y = {(z, t) ∈ Pn+1(C)× T | F (z)− tzdn+1 = 0}.

The map πf is the projection on the second factor. The monodromy

MY on the primitive part Pn(Yt,Q), t ∈ T ′ of the middle cohomology

of a regular fiber is quasi-unipotent. MY,s,MY,u and NY can be defined

similarly and they satisfy similar relations as the local case. There is a

(−1)n-symmetric nondegenerate intersection form I∗Y on Pn(Yt,Q). We set

SY = (−1)n(n−1)/2IcohY . Also set Y∞ = Y ′×T ′H. The pure Hodge structures

on Pn(Yt,Q) are polarized by SY . By the nilpotent orbit theorem, the limit

filtration

F •∞ = lim
Im(t)→∞

exp(NY .t)F
•
u(t) (4.14)

on Pn(Yt,C) is well defined. This means that we equip Hn(Y∞,C) with the

limit Hodge filtration as in (2.44) or the same in (3.10).
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Theorem 4.2.2. [H1]

SY , NY ,W•, F
•
∞ give a polarized mixed Hodge structure on Pn(Y∞). It

is invariant w.r.t MY,s.

Remark 4.2.3. There exists an exact sequence

0→ Hn(Y0)→ Hn(Y∞)→ Hn(X∞)→ Hn+1(Y0)→ Hn+1(Y∞)→ 0

(4.15)

Theorem 4.2.4. (Invariant Cycle Theorem)[H1] If f is a polynomial of

sufficiently high degree s.t the properties above are satisfied. Then the map-

ping i∗ : Pn(Y∞) → Hn(X∞) is surjective and the kernel is ker(i∗) =

ker(MY − id). Moreover, there exists a unique MHS on Hn(X∞) namely

Steenbrink MHS, which makes the following short exact sequence an exact

sequence of mixed Hodge structures

0→ ker(MY − id)→ Pn(Y∞)→ Hn(X∞)→ 0. (4.16)

The MHS’s are invariant w.r.t the semi-simple part of the monodromy.

The aforementioned MHS on Hn(X∞,C) is called Steenbrink MHS, which

is also polarized cf. sec. 5.2, see also section 6.3.

4.3 Twisted de Rham complex

Assume f : (Cn+1, 0) → (C, 0) is a hypersurface germ with isolated critical

point. The formula for the dimension of cohomology of the Milnor fiber Xt

is

dim(Hn(Xt,C)) = dim(
C[[x0, ..., xn]]

J(f)
). (4.17)

There are various proofs of this fact. One of them consists of deforming f

by adding a generic linear form and counting the number of simple critical

points of the deformed function.

Following Brieskorn one may prove it in this way. The right hand side

of equality is the (n+ 1)-cohomology of
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0→ OCn+1,0
df→ Ω1

Cn+1,0

df→ ...
df→ Ωn+1

Cn+1,0
→ 0

known to have no other non-zero cohomologies. If we twist it with a new

variable z, we get the following

0→ OCn+1,0[[z]]
zd−df∧→ Ω1

Cn+1,0[[z]]
zd−df∧→ ...→ Ωn+1

Cn+1,0
[[z]]→ 0

It has non-zero cohomology at most in degree n + 1, that is a free C[[z]]-

module of rank dim(Hn(Xt,C)). The cohomologies of the second complex

(f isolated or not) are called local Gauss-Manin systems. One can use a

polynomial version of the complex rather than a power series one. Then, we

obtains the following well-known result.

Proposition 4.3.1. [SA1] For each k, Gk0 := Hk(X,Ω•X [z], zd − df∧) is a

free C[z]-module of finite rank. Moreover, the two modules

Hk(X,Ω•X , df) =
Gk0
z.Gk0

, Hk(X,Ω•X , d− df) =
Gk0

(z − 1).Gk0
.

have the same finite dimensions. The theorem is true if Ω•X is replaced by

Ω•X(logD).

The C[[z]]-module

H(0) = Hn+1(Ω•Cn+1,0[[z]], zd− df∧) (4.18)

is called the Brieskorn lattice. In this setting the role of the polarization in

ordinary Hodge structures is played by the so called higher residue pairings,

K =
∑
k≥0

zkKk : H(0) ⊗H(0) → C[[z]]. (4.19)

or by the generating function

K =
∑
k≥0

zkKk : H(0) ⊗H(0) → C[[z]]. (4.20)

It is a sesqui-linear, flat skew hermitian pairing. We have the following

iomorphism,
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H(0)

z.H(0)
=

Ω•Cn+1,0[[z]]

df ∧ Ω•Cn+1,0
[[z]]

. (4.21)
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Bilinear forms for

singularities

In this chapter different bilinear forms on the middle cohomology of Milnor

fibers are studied. We also provide some examples for more conveniences.

We assume the holomorphic germ f : Cn+1 → C to have an isolated singular-

ity at 0 ∈ Cn+1 through all this chapter. When concern with the projective

compactification we specify as fX for the local fibration in affine space and

fY for the projective one as in 4.2. In section 5.3 by using hermitian form

of D. Barlet, we give another proof for the existence of polarization, namely

prop. 5.3.4 which is the same as 3.2.1.

5.1 Intersection form

Assume f : Cn+1 → C be a milnor fibration with isolated singularity, and

monodromy M ∈ π1(T ′). The Intersection form

I : Hn(Xt,Z)×Hn(Xt,Z)→ Z

is (−1)n-symmetric and M -invariant. Its kernel is

RadI = Ker(M − id) ⊂ Hn(Xt,Z)

The long exact sequence of the pair (Xt, ∂Xt) becomes

0→ Hn(∂Xt,Z)→ Hn(Xt,Z)→ Hn(Xt, ∂Xt,Z)→ Hn−1(∂Xt,Z)→ 0

and Hn(∂Xt,Z) = ker(M − id) ⊂ Hn(Xt,Z). The canonical map
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can : Hn(Xt,Z)→ Hn(Xt,Z) = Hn(Xt, ∂Xt,Z)

and I are related by I(a, b) = 〈can(a), b〉, where 〈, 〉 is evaluation given by

duality. The canonical isomorphism Hn(Xt,Z) = Hn(Xt, ∂Xt,Z) gives

V ar : Hn(Xt,Z)→ Hn(Xt,Z), V ar(γ) = [M(γ)− γ]

where [γ] is the representative in Hn(Xt, ∂Xt,Z). A form Icoh(A,B) can be

defined by

Icoh(A,B) = I(Can−1A,Can−1B).

The Milnor fibration f defines a usual fibration on S1 given by ( f
|f |)
−1(t/|t|).

The form

L : Hn(Xt,Z)×Hn(Xt,Z)→ Z (5.1)

defined by L(a, b) = 〈V ar−1a, b〉, is called the Seifert form. It can also be

expressed by L(a, b) = lk(ã, b̃) , where ’ã’ means lift of the cycle by the

fibration ( f
|f |)
−1(t/|t|) and lk is the linking form on S2n+1. Classically, it is

equal to the intersection number of (A, b̃) where A is a cycle on S2n+1 which

∂A = ã, [H2].

Example 5.1.1. [A] Consider the family fλ = x3 +y3 +λx2y. For any fixed

λ, the function fλ has an isolated singularity at 0. µ = 4 is constant in the

family and a basis of Jacobi algebra is given by 1, x, x2, y. Set ω = xdy−ydx,

easy computation gives

dω = 2
3
dfλ
fλ
∧ ω, d(xω) = dfλ

fλ
∧ xω, d(yω) = dfλ

fλ
∧ yω,

d(x2ω) = 4
3
dfλ
fλ
∧ x2ω

According to [A] page 134 and [BA], the set B = {[f−2/3
λ ω], [f−1

λ xω], [f−1
λ yω], [f

−4/3
λ x2ω]}

provides a multivalued horizontal basis of the Gauss-Manin bundle. The
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matrix of the intersection form takes the form, ([A] page 135)

A =


0 i 0 0

−i 0 0 0

0 0 0 0

0 0 0 0


5.2 Polarization form S

Consider the Milnor fibration f : X → T embedded into a compactified

(projective) fibration fY : Y → T such that the fiber Yt sits in Pn+1 for

t 6= 0 with only unique singularity at 0 ∈ Y0 over t = 0, and also there exists

a short exact sequence

0→ Hn(Y0,Q)→ Hn(Yt,Q)→ Hn(Xt,Q)→ 0, t 6= 0. (5.2)

We have Hn(Y0,Q) = ker(MY − id), by the invariant cycle theorem, where

MY is the monodromy of fY . The form SY := (−1)n(n−1)/2IcohY : Hn(Yt,Q)×
Hn(Yt,Q)→ Q is the polarization form of pure Hodge structure onHn(Yt,C),

t ∈ T ′. W. Schmid has defined a canonical MHS on Hn(Yt,Q) namely limit

MHS, which makes the above sequence an exact sequence of MHS’s. In the

short exact sequence, the map i∗ is an isomorphism on Hn(Yt,Q)6=1 →
Hn(Xt,Q) 6=1 giving S = (−1)n(n−1)/2Icoh = (−1)n(n−1)/2IcohY = SY on

Hn(Xt,Q) 6=1. The above short exact sequence restricts to the following,

0→ ker{NY : Hn(Yt,Q)1 → Hn(Yt,Q)1} → Hn(Yt,Q)1 → Hn(Xt,Q)1 → 0

(5.3)

So a, b ∈ Hn(Xt,Q)1 have pre-images aY , bY ∈ Hn(Yt,Q)1 and

S(a, b) = SY (aY , (−NY )bY ) (5.4)

is independent of the lifts of aY , bY , by the fact that NY is an infinites-
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imal isometry for SY . The equation 5.3 defines the desired polarization

on Hn(Xt,Q)1. The polarization form S is M -invariant, non-degenerate,

(−1)n-symmetric on Hn(Xt,Q) 6=1 and (−1)n+1-symmetric on Hn(Xt,Q)1,

[H1].

Lemma 5.2.1. [H1] The bilinear form S on Hn(X∞,Q) defined by

S(a, b) =

SY (aY , bY ) a, b ∈ H6=1

SY (aY , (−NY )bY ) a, b ∈ H1

(5.5)

is non-degenerate and invariant with respect to the monodromy.

Theorem 5.2.2. [H1] Steenbrink MHS and S yields a PMHS of weight n

on Hn(X∞,Q) 6=1 and PMHS of weight n+ 1 on Hn(X∞,Q)1.

Example 5.2.3. [HS] Consider the following topological data: Let H∞R
be a 3-dimensional real vector space , H∞C = H∞R ⊗ C its complexification

and choose a basis H∞ = ⊕3
i=1CAi such that A1 = A3 and A2 ∈ H∞R .

Moreover, choose a real number α1 ∈ (−3/2,−1) and put α2 = 0, α3 :=

−α1, and let M ∈ Aut(H∞C ) be given by M(A) = A.diag(λ1, λ2, λ3) where

A = (A1, A2, A3) and λi = exp(−2πiαi). Putting

0 = F 2
0 ⊂ F 1

0 = CA1 ⊂ F 0
0 = CA1 ⊕ CA2 = F−1

0 ⊂ F−2
0 = H∞

defines a sum of pure Hodge structures of weights 0 and −1 on H∞=1 and

H∞6=1. A polarization form is defined by

S(Atr, A) =

 0 0 γ

0 1 0

−γ 0 0



where γ = −1
2πiΓ(α1 + 2)Γ(α3 − 1). In particular we have for p = 1,

ip−(−1−p)S(A1, A3) = (−1).i. S(A1, A3) = Γ(α1+2)Γ(α3−1)
2π > 0

and for p = 0
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ip−(−p)S(A2, A2) = S(A2, A2) > 0.

So that F •0 indeed induces a pure polarized Hodge structure of weight −1

on H∞6=1 = CA1 ⊕CA2 and a pure polarized Hodge structure of weight 0 on

H∞=1 = CA2. M is semi-simple and its eigen-spaces are one dimensional.

Remark 5.2.4. A Hermitian form can be associated to the polarization

form S:

h : Hn(Xt,C)×Hn(Xt,C)→ C

h(a, b) = (−1)n(n−1)/2 1
(2πi)nS(a, b̄), on Hn(Xt,C) 6=1

h(a, b) = (−1)n(n−1)/2 1
(2πi)n+1S(a, b̄) on Hn(Xt,C)1.

5.3 Hermitian form

D. Barlet, [BV], [L], defines the Hermitian form

B : Ωn+1
Cn+1,0

× Ωn+1
Cn+1,0

→ N

(ω, ω′)→ 1
(2πi)n

∫
Xt

ρ
ω

df
∧ ω

′

df

where N =
⊕

α∈Q,k∈N
C[[t, t̄]]|t|2α log(tt̄)k/C[[t, t̄]], and ρ is a bump function on

a sufficiently small neighbourhood of 0 ∈ C.

Theorem 5.3.1. ([SC2], [L], [V] page 38) If d = deg(f) is sufficiently large

then the form ω ∈ Ωn+1
X can be prolonged to Pn+1 such that the its Leray

residue ω/df := ω/(f − t) extends to residue of the prolongation form on

Y . Moreover, the extension can be such that its Jordan blocks decomposition

remain similar.

The residue
ω

df
|Y (s) is expanded as Laurent series expansions in terms of

powers of log(s) in the following form,

ω

df
= sk(aY0 + aY1 log(s) + ...+ aYn−1 log(s)n−1 + ...)

ω′

df
= sk

′
(bY0 + bY1 log(s) + ...+ bYn−1 log(s)n−1 + ...)
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where aYi , b
Y
i are multi-valued horizontal sections of the Gauss-Manin system

of s→ Pn(Y (s)) and NY a
Y
i = aYi+1, and similar for b′s.

F (s) =
1

(2πi)n

∫
f=s

ρ
ω

df
∧ ω

′

df
(5.6)

The difference between the function F and similar one for projective fibra-

tion Y namely,

G(s) =
1

(2πi)n

∫
fY =s

ρ
η

df
∧ η′

df
(5.7)

is C∞, where η is the prolongation of ω as in 5.3.1. As the fiber of fX (resp.

fY ) are transversal to ∂X (resp. ∂(Y )) and because fY has no critical

point in Y −X. By definition h(a, b) is the coefficient of sks̄k
′
log |s|2 in the

expansion at s = 0 of G and F both, [L]. We write

(2πi)nG(s) = sks̄k
′
(

∫
fY =s

aY0 ∧bY0 +log(s)

∫
fY =s

NY a
Y
0 ∧bY0 +log(s̄)

∫
fY =s

aY0 ∧NY bY0 +...).

(5.8)

On the other hand expanding the form B gives,

∑
α,β /∈N

tα.t̄β
(log t.t̄)k

k!
h(Nk.sα(ω), sβ(η)) +

∑
α,β∈N

tα.t̄β
(log t.t̄)k+1

(k + 1)!
h(Nk.sα(ω), sβ(η))

(5.9)

When the section belongs to the eigen-space H6=1, the intersection or polar-

ization form for Milnor fibration of f agrees with that of fY . A comparison

of coefficients in 5.8 and 5.9 provides the following theorem.

Theorem 5.3.2. [L]

(1) h is non degenerate.

(2) If Q is the cup product on H6=1,

∀x, y ∈ H6=1 ×H6=1, h(x, y) =
1

(2πi)n
Q(x, ȳ). (5.10)
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[The coefficient of |t|2m log(tt̄)l in the first sum is 1
(l)!Q

′(N l
Y U, Ū). On the

other hand, this coefficient is 1
(l)!h(N lu, ū) [L].]

The embeddingXt → Yt can be in a way that the restriction rt : Hn(Yt,C)→
Hn(Xt,C), t 6= 0 is surjective. Then we have the following short exact se-

quence for the eigen-space H1 of these spaces.

0→ I → H ′1(Yt)→ H1(Xt)→ 0.

where I being the kernel. We write the residue in the form

[R(ω̃(t)] =
∑
j<m

tjVj + tmtNY U +
∑
α>m

tαtNY Uα

where r(U) = u, Vj ∈ I, Uα ∈ H ′. In this way∫
Yt

R(ω̃(t)) ∧R(ω̃(t)) =

P (|t|2) + |t|2m(

n∑
r=0

n∑
s=0

Q′(
(log t)r

r!
NY

rU,
(log t)s

s!
NY

sU) + o(|t|2m)

= P (|t|2) + |t|2m(
n∑
l=0

(log tt̄)l

l!
Q′(NY

lU, Ū) + o(|t|2m)).

As before a comparison of coefficients of the last form with that of 5.8 yields,

[L],

Theorem 5.3.3. [L]

∀x, y ∈ H1 ×H1, h(x, y) = 1
(2πi)nQ

′(NY x̃, ỹ).

It is easy to reprove Riemann-Hodge bilinear relations in the variation of

mixed Hodge structure associated to a projective fibration. If F •,W• be

the Hodge and weight filtration defined by Steenbrink, and P k+n := {u ∈
GrWk+n|Nk+1u = 0} the primitive components, it has a pure Hodge structure

of weight k + n, so

P k+n =
⊕

p+q=k+n

P p,q

.

77



Chapter 5. Bilinear forms for singularities

Let P p,q1 = H1 ∩ P p,q, P p,q6=1 = H6=1 ∩ P p,q. Then the Riemann-Hodge

bilinear relations on the mixed Hodge structure of Hn(X∞,C) have the

following description.

Proposition 5.3.4. [L] The following holds;

1) If (u, v) ∈ P p,q1 × P r,s1 , p+ q = r + s = n+ k, then

• h(Nk−1u, v) = 0, if (p, q) 6= (r, s).

• If u 6= 0, (−1)n(n−1)/2+k+ph(Nk−1u, u) > 0.

2) If (u, v) ∈ P p,q6=1 × P
r,s
6=1 , p+ q = r + s = n+ k, then

• h(Nku, v) = 0 if (p, q) 6= (s, r).

• u 6= 0, (−1)n(n−1)/2+p+kh(Nku, v) > 0.

Proof. This follows from 5.2.4, 5.3.2 and 5.3.3.

Example 5.3.5. [BA] Take f = x3 + y3 + z3. A monomial basis of Jacobi

algebra is given by,

1, x, y, z, xy, yz, zx, xyz.

Hence µ = 8. Set ω = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy. Then by easy

calculation we have,

dω =
df

f
∧ ω ,

d(xω) =
4

3

df

f
∧ xω, d(yω) =

4

3

df

f
∧ yω, d(zω) =

4

3

df

f
∧ zω ,

d(xyω) =
5

3

df

f
∧ xyω, d(yzω) =

5

3

df

f
∧ yzω, d(zxω) =

5

3

df

f
∧ zxω ,

d(xyzω) = 2
df

f
∧ xyzω.

The forms

{[ω
f

], [
xω

f4/3
], [

yω

f4/3
], [

zω

f4/3
], [
xyω

f5/3
], [
yzω

f5/3
], [
zxω

f5/3
], [
xyzω

f2
]},
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give a basis of horizontal multivalued sections of the Gauss-Manin system,

[BA]. In this basis the monodromy is given by the matrix



1

exp(4πi/3)

exp(4πi/3)

exp(4πi/3)

exp(2πi/3)

exp(2πi/3)

exp(2πi/3)

1



The forms

{ω, xω, yω, zω, xyω, yzω, zxω, xyzω}

provide also a basis for the Gauss-Manin module. If we denote this bases as

{mα} for suitable bump function ρ,∫
f=s

ρω ∧ ω̄ = c1|s|2. log |s|∫
f=s

ρ|mi|2ω ∧ ω̄ = c1|s|2.|s|8/3, i = 2, 3, 4∫
f=s

ρ|mi|2ω ∧ ω̄ = ci|s|2.|s|10/3, i = 5, 6, 7∫
f=s

ρω ∧ ω̄ = c8|s|2.|s|4 log |s|

where ci are real.

So the matrix of the hermitian form with respect to bases of multivalued

forms above is given by
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−1

4π2



c1

c2

c3

c4

c5

c6

c7

c8


5.4 Grothendieck Residue Pairing

The Grothendieck residue is a linear form on Jacobi algebra defined by

Af =
OCn+1,0

(∂f/∂x0, ..., ∂f/∂xn)
→ C

g 7−→ Res0

[
gdx

∂f
∂x0

... ∂f∂xn

]
:=

1

(2πi)n+1

∫
Γε

gdx
∂f
∂x0

... ∂f∂xn

.

It does not depend on ε , but does depend on coordinates x0, ..., xn. It

induces a bilinear form Resf,0 on

Ωf := Ωn+1
Cn+1,0

/df ∧ Ωn
Cn+1,0

Resf,0 : Ωf × Ωf → C

(g1dx, g2dx) 7−→ Res0

[
g1g2dx
∂f
∂x0

... ∂f∂xn

]
,

which is independent of the coordinates x0, ..., xn. The form Resf,0 is sym-

metric and non-degenerate (proved by Grothendieck), and it is equal to the

sum of local residues at each critical point.

Example 5.4.1. [PV] Take f = x3 + xy2, Then the Milnor algebra for f is

Af = C{x, y}/(3x2 + y2, 2xy).

For ω = 2ydx ∧ dy, compute resf (ω, ω):
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Resf,0(ω, ω) = Res[
4y2dx ∧ dy

(3x2 + y2).2xy
].

To compute this residue we change the variable to u =
√

3x + y and v =√
3x− y, and observe that u2 = (3x2 + y2) +

√
3(2xy) and v2 = (3x2 + y2)−√

3(2xy). Therefore, the above expression is equal to

Resf,0
−4(u−v2 )2.du ∧ dv

u2.v2
= 2.

Example 5.4.2. Take f = x4 in one variable only. The forms xmdx, m =

0, 1, 2 give a basis of Gn0 . Then

Kf (ωm, ωm′) =
z

2πi

∫
xm+m′

4x3
=

1

4
δm,2−m′ .z.

is the higher residue pairing of K. Saito. The Grothendieck residue is easy

to calculate in this basis

Resf,0(xmdx, xm
′
dx) =

1

4
δm,2−m′ .

Remark 5.4.3. The residue pairing can be defined in a more general context

[G3], for a regular sequence {f0, ..., fn} of holomorphic germs defining an

isolated singularity at 0 ∈ Cn+1. For a function g, first set

ω =
gdz0 ∧ ... ∧ dzn

f0...fn
(5.11)

then define the residue as

Res0ω = (
1

2πi
)n
∫

Γ
ω (5.12)

where Γ = {z; |fi(z)| = ε}, is oriented by

d(arg f0) ∧ ... ∧ d(arg fn) > 0.

This generalizes the previous definition. Residue depends only on the ho-

mology class of Γ and the cohomology class of ω for trivial reasons. Also,

Res0 =
g(0)

If (0)
, If (0) = |∂(f0, ..., fn)

∂(z0, ..., zn)
(0)| 6= 0.
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The residue pairing in this way just depends on the ideal generated by

J(f) = (f0, ..., fn), and not to generators chosen. Moreover, for germs al-

ready in this ideal the residue degenerates. In this way it induces a form

resf : O/J(f)⊗ O/J(f)→ C

The last pairing is known to be non-degenerate, namely local duality theo-

rem.

Remark 5.4.4. The image of 1 or the integral∫
Γ

df0

f0
∧ ... ∧ dfn

fn

evaluates the intersection number of divisors Di := {fi = 0} as deg(f). It

also shows that this number is locally constant. In case, fi = ∂f/∂xi this

number is equal to the Milnor number of f that is dimAf , the Jacobi or

Milnor algebra. Residue also satisfies a type of continuity principle, meaning

it remains constant in continues deformations.
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Hodge theory of Brieskorn

lattice

The limit MHS can be defined in a quite different way using invariants of

the singularity. In this chapter we give another definition of Steenbrink limit

mixed Hodge structure by the Structure of Brieskorn lattice. We define the

basic tools as; the V -filtration, Brieskorn lattice, and spectral pairs of the

isolated singularities. These data are systematically used in Chapter 8 for

the main contributions.

6.1 Elementary sections

Assume f : Cn+1 → C is a holomorphic germ having isolated singularity at

origin. Let X be the intersection of a closed ball in Cn+1 centered at 0 ∈ C
with the pre-image under f of an open disk T in C centred at 0 ∈ C. By

appropriate choice of X and T , the restriction

X ′ = X \ f−1(0)
f−→ T \ 0 = T ′ (6.1)

is a C∞ fiber bundle, and the restriction of f to ∂X is a trivial fiber bundle.

Let M = Ms.Mu be the decomposition of M into semi-simple and uni-potent

parts and

N = − logMu

2πi
(6.2)

the logarithm of the uni-potent part. Then by the monodromy theorem

(Theorem 3.1.1) Nn+1 = 0 and even Nn = 0 on the generalized 1-eigenspace.
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The eigenvalues of Ms are the root of unity,

−2πiN ∈ End(HQ) (6.3)

is defined over Q. We consider the pull back of the cohomology bundle under

the universal covering σ : H → T ′; where we denote it by H∞. The sections

of H∞ are called multivalued sections of H. We use the same symbol H for

the sheaf of multivalued sections, when no ambiguity. Let

Cα = ker(t∂t − α)r ⊂ (i∗H)0, λ = log(2πiα),−1 ≤ α < 0 (6.4)

for the greatest r such that the transformation (t∂t −α)r 6= 0. The sections

sα(A) := tαexp(N log t)A(t) − 1 ≤ α < 0. (6.5)

Where A ∈ Hλα
C is a multivalued section of H, define a single valued sections

called the elementary section associated to A.

The local elementary sections of the cohomology bundle at the critical value

0 generate a regular C{t}[t−1]-module G, namely the local Gauss-Manin

system defined by;

G =
∑

−1≤α<0

C{t}[t−1]Cα. (6.6)

G is a µ-dimensional C{t}[t−1]-subvector space of (i∗H)0.

Proposition 6.1.1. ([SC2] prop. 3.5) ∂t : G→ G is invertible.

Definition 6.1.2. We denote s := ∂−1
t . Then, ∂s := ∂2

t .t.

The identities [t, ∂t] = [s, ∂s] = 1, [t, s] = s2, t = s2.∂s are straight-forward.

Definition 6.1.3. We call the maximal C{s}-module

G̃ := C{t}C0 ⊕
⊕

−1<α<0

C{t}[t−1]Cα

in G, the reduced local Gauss-Manin connection. The µ-dimensional C{{s}}[s−1]-

vector space G̃⊗C{{s}} C{s}[s−1] is called the Gauss-Manin system.
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6.2 V-filtration

The V -filtrations on G is a decreasing filtration indexed by rational numbers

α ∈ Q. It is also called Kashiwara-Malgrange filtration.

Definition 6.2.1. (V-filtration)

The (Kashiwara-Malgrange) V -filtration on G is a decreasing filtration

of C[[t]]-modules V = (V α)α∈Q defined by,

V α :=
∑
α≤β

C{t}Cβ = ⊕α≤β<α+1C{t}Cβ

V >α :=
∑
α<β

C{t}Cβ = ⊕α<β≤α+1C{t}Cβ

The V -filtration can be characterized by the following properties,

• t.V α ⊂ V α+1,

• ∂t.V α ⊂ V α−1

• ti∂jt V α ⊂ V α for all i > j.

• The operator t∂t − α is nilpotent on GrαV .

The definition of V α and V >α is independent of choice of t, and

Cα =
V α

V >α

Then the isomorphism 4.12 becomes

ψ :=
⊕

−1<α≤0

ψα :
⊕

−1<α≤0

Hλα
C →

⊕
−1<α≤0

Cα =
V >−1

t.V >−1
∼=

V >−1

s.V >−1
. (6.7)

where the last isomorphism is for trivial reasons.

Proposition 6.2.2. (see [SCHU] sec 1.6)

V α and V >α are free C{t}-modules of rank = µ.

85



Chapter 6. Hodge theory of Brieskorn lattice

A straight forward calculation shows

G = C{t}[∂t]
⊕⊕

λ

mλ⊕
j=1

C{t}[∂t]
C{t}[∂t](t∂t − αλ)nλ,j

= C{t}[t−1]V −1. (6.8)

where

V −1 =
⊕
λ

mλ⊕
j=1

C{t}Cαλ,j

Cα
′j := ψα(Hλ,j

C )

The above direct sum is an application of the Jordan-Holder structure the-

orem.

Remark 6.2.3. On the C{t}[∂t]-module G̃ (Gauss-Manin system) ∂t is in-

vertible. Note that this is true when f defines an isolated singularity germ.

The subspaces C̃α, Ṽ
α, Ṽ >α for G̃ = (

∫ n+1
f OX) can be defined similarly.

Definition 6.2.4. The ring

R = C{{∂−1
t }} = {

∑
i≥0

ai∂
−i
t |

∑
i≥0

ait
i/i! ∈ C{t}}

is called the ring of micro-differential operators with constant coefficients.

Theorem 6.2.5. [H3]

(1) G̃ =
⊕

−1<α≤0

R[∂t]C̃α is an R[∂t]-vector space of dimension µ. Ṽ α, Ṽ >α

are R-modules of rank µ.

(2) G is canonically isomorphic to G̃⊗C{t} C{t}[t−1] as C{t}[∂t]-module.

(3) The C{t}[∂t]-module homomorphism G̃→ G induces and an R-module

isomorphism Ṽ >−1 → V >−1.

(4) H ′′0 ⊂ Ṽ >−1 ⊂ G̃ are R-modules of rank µ.
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6.3 Mixed Hodge structure on the vanishing

cohomology

We begin with the definition of the Brieskorn lattice, due to E. Brieskorn

himself.

Definition 6.3.1. The OT -module

H(0) := f∗Ω
n+1
X /df ∧ d(f∗Ω

n−1
X )

is called Brieskorn lattice. We call its stack

H ′′ := H
(0)
0

at 0 ∈ T the local Brieskorn lattice.

We use the two notations H(0) and H ′′ equally through the text for

Brieskorn lattice, when no ambiguity arises. We have two other sub-OT -

module of H ′′ defined by,

H = f∗df ∧ Ωn
X/df ∧ d(Ωn−1

X )

H ′ = f∗Ω
n+1
X /dΩn

X + df ∧ (Ωn
X)

of rank µ, such that

• H ↪→ H ′
df
↪→ H′′

• H ′|T ′ = H ′′|T ′ = H, cf. def. (4.4).

• H ′′/H ′ ∼= Ωn+1
X /df ∧ Ωn

X =: Ωf
∼= H ′′/H ′.

• H ∂t→ H ′
∂t→ H′′, given by,

[η] 7→ [
dη

df
], [df ∧ η] 7→ [dη]

cf. [SCHU] sec. 1.4, Theorems 1.4.5, 1.4.6 and 1.4.8.
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The H
(0)
0 is a C{t}-module with a regular connection ∇ equipped with

an action of ∂−1
t . The module G is a localization of H(0) by the action ∂−1

t .

We have the following important relation,

H(0)

∂−1
t .H(0)

=
Ωn+1
X /df ∧ d(f∗Ω

n−1
X )

df ∧ Ωn
X/df ∧ d(f∗Ω

n−1
X )

= Ωf (6.9)

which follows from the identity ∂−1
t dη = df ∧ η, where η ∈ Ωn

X .

By definition the operator t∂t−α is nilpotent on Cα and thus Jacobson-

Morosov theorem (cf. [SA1] page 12) or by 3.1.2, we obtain a unique weight

filtration W on Cα centered at −n, cf. [SCHU] sec 1.7. Similar statement

holds for the linear map M − id on H1 and M − λ on Hλ which provide

us weight filtrations centered at −n − 1 and −n, respectively, cf. [SCHU],

def. 1.7.5. By the monodromy theorem both of these weight filtrations have

length at most 2n. This suggests the following definitions.

Definition 6.3.2. 1) The increasing weight filtration W = (Wk)k∈Z on G is

defined by

W := ⊕−1<α≤0C{{t}}WCα , by C{{t}}-vector spaces.

2) The filtration W on HQ is defined by

W := WH1
Q ⊕WH 6=1

Q , by Q-vector spaces

We have that, grV gr
WG = grW grV G, cf. [SCHU] page 48.

Definition 6.3.3. Two Hodge filtrations can be defined on Hn(X∞,C) by

F pStH
n(X∞,C)λ = ψ−1

α

(V α ∩ ∂n−pt H ′′

V >α

)
, α ∈ (−1, 0], (6.10)

F pV aH
n(X∞,C)λ = ψ−1

α

(V α ∩ t−(n−p)H ′′

V >α

)
, α ∈ (−1, 0], (6.11)

namely Steenbrink-Scherk and Varchenko Hodge filtrations respectively (know-

ing that V −1 ⊃ H ′′0 , and 0 = Fn+1 = Fn+1
V a ). These two filtrations together

with the weight filtration W define two Hodge structures on Hn(X∞,C).
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Chapter 6. Hodge theory of Brieskorn lattice

The above definition agrees with that given in 4.2.4, cf. [H1] proposition 4.6

by

Theorem 6.3.4. ([H1] prop. 4.6) The Hodge filtration defined in (6.10) is

the Steenbrink Hodge filtration (see Theorem 4.2.4).

The filtrations

F kStG := ∂ktH
′′ (6.12)

and

F kV aG := t−kH ′′, (6.13)

on G are also called the Steenbrink and Varchenko Hodge filtrations.

Theorem 6.3.5. ([H3], [SCHU] prop 1.7.9)

F • and F •V a are different on Hn(X∞,C) in general, however the induced

filtrations on the GrWl H
n coincide, i.e.

F pV aGr
W
l H

n(X∞,C) = F pStGr
W
l H

n(X∞,C)

.

Lemma 6.3.6. ([SAI6] lemma 2.4 of sec. 2) Let f be a germ of isolated

singularity as before, such that f : X ′ → T ′ is smooth. Define Ak :=

ker(∧df) : Ωk
X → Ωk+1

X . Then ∧df induces an isomorphism Ω•X′/T ′ → A[1],

and the natural inclusion A• ↪→ Ω•X [t, t−1] is a filtered quasi-isomorphism.

We end up with the following theorem;

Theorem 6.3.7. ([SP] Theorems 10.26 and 10.27, [SCHU] sec. 1.5 cor.

1.5.5 and prop. 1.5.6, [S1], [SA8] Lec. 3, see also [SA5]) Assume f :

Cn+1 → C is a holomorphic map with isolated singularity, inducing the

Milnor fibration f : X ′ → T ′. Then we have the following isomorphisms

G = Rnf∗C⊗ OT ′ = Rnf∗ΩX′/T ′ =
Ωn+1[t, t−1]

(d− tdf∧)Ωn+1[t, t−1]

where t is a variable.
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The relative de Rham complex ΩX′/T ′ in the theorem is

0→ f−1OT ′ → OX′ → ΩX′/T ′ → ...→ Ωn+1
X′/T ′ → 0

where

Ωk
X′/T ′ = Ωk

X/f
∗Ω1

T ′ ∧ Ωk−1
X′

and the differential is induced by the usual differential of the de Rham

complex for X ′.

Example 6.3.8. ([KUL] page 109, [KUL] 7.3.5) Let f = xp + yq + zr +

axyz, a 6= 0, 1/p+ 1/q + 1/r < 1. Set

ω = dx ∧ dy ∧ dz.

By a method due to J. Scherk, [SC3], the forms

ω, t∂tω

∂t(x
kω), (0 < k < p), ∂t(y

kω), 0 < k < q, ∂t(z
kω), (0 < k < r)

provide a basis for the canonical lattice L = V >−1. The operator t∂t on

C = L/tL has the following form,

t∂t(t∂tω) = 0

t∂t(∂tx
kω) =

k − p
p

∂tx
kω

t∂t(∂ty
kω) =

k − q
p

∂ty
kω

t∂t(∂tz
kω) =

k − r
p

∂tz
kω

This basis is a Jordan basis for the operator t∂t. Decompose C = ⊕−1<α≤0Cα =

C0 ⊕ C 6=0 where C0 is the subspace generated by ω and t∂tω. The weight

filtration on C, is defined as follows. On C 6=0 the operator N = 0 and

W1 = 0,W2 = C 6=0. On C0 the operator N 6= 0, N2 = 0 and we have

W1 = 0, W2 = W3 = Ct∂t, W4 = C0.
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Chapter 6. Hodge theory of Brieskorn lattice

Therefore, the weight filtration is as follows

0 ⊆W2 = W3 ⊆W4

W2 = C 6=0 ⊕ Ct∂tω.

The Hodge filtration is defined by,

C = F 0 ⊇ F 1 ⊇ F 2 = 0

where F 1 is the subspace generated by ω.

6.4 Hodge numbers and Spectral pairs

Assume the holomorphic germ f : Cn+1 → C has an isolated singularity at

0. In the previous section we defined the three filtrations F , W and V on

G.

Definition 6.4.1. We define the following invariants of the Gauss-Manin

system G;

• Hodge numbers are defined by

hp,l−pλ := dimC(grpF gr
W
l H

λ
C).

• Spectral numbers are α ∈ Q, such that

dα := dimC gr
α
V gr

F
0 G > 0

Sp(f) := (dα)α∈Q.

• Spectral pairs are the pairs (α, l) ∈ Q× Z, such that

dαl = dimC gr
W
l gr

α
V gr

F
0 G > 0

Spp(f) := (dαl )(α,l)∈Q×Z ∈ NQ×Z.

Remark 6.4.2. dα =
∑

l d
α
l .
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Chapter 6. Hodge theory of Brieskorn lattice

The symmetries between Hodge numbers implies the following relations for

the multiplicities of spectral pairs of an isolated hypersurface singularity.

Lemma 6.4.3. ([SCHU] sec. 1.8) We have the following relations between

Hodge numbers and spectral numbers.

dα+p
l = hn−p,l−n+p

λα
, −1 < α ≤ 0

dαl = hn−p,l+1−n+p
1 , −1 < α ≤ 0.

We have the following duality relations;

dαl = d2n−l−1−α
l ,

dαl = dα−n+l
2n−l ,

dαl = dn−1−α
2n−l ,

dα = dn−1−α.

Corollary 6.4.4. ([H1] or [SCHU] page 56, cor. 1.8.6) If α /∈ (−1, n),

or l /∈ [0, 2n] or (α ∈ Z and l /∈ [1, 2n − 1]) then dαl = 0. In particular

V >−1 ⊇ H ′′ ⊇ V n−1.

The first inclusionin corollary 6.4.4 is explained as follows. Let ω ∈ Ωn+1
X ,

holomorphic (n+ 1)-form. Then
ω

df
|Xt gives a section s[ω](t) of cohomology

bundle H. The kernel of the map

s : Ωn+1
X → V >−1, ω → s[ω] = (ω/df|Xt) (6.14)

is df ∧ dΩn−1 cf. [H1] page 17. Therefore,

H ′′ =
Ωn+1
X,0

df ∧ dΩn−1
X,0

is identified with its image in V >−1. By this corollary we sometimes consider

H ′′ as a subset of V >−1. This fact has been used in the definition of the

Steenbrink limit Hodge filtration (6.10).

Theorem 6.4.5. ([SCHU], Theorem 1.8.2) For p ∈ Z, multiplication by tp

induces a C-isomorphism

GrpFGr
α
VGr

W
l G

×tp−→ Grα+p
V GrWl Gr

0
FG
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Chapter 6. Hodge theory of Brieskorn lattice

Theorem 6.4.5 is quite crucial for us in Chapter 8, and is the base of some

gluing data between lattices inside the Gauss-manin system G. It provides a

base in order to explain the extension of the Gauss-manin system of isolated

hypersurface singularities, in 8.4.

Theorem 6.4.6. (Thom-Sebastiani) ([H3] ,[KUL] sec. 8.7) If f ∈ C{x0, ..., xn}, g ∈
C{y0, ..., ym}, Sp(f) = (α1, ..., αµ(f)), Sp(g) = (β1, ..., βµ(g)). Then

Sp(f + g) = (αi + βj + 1 | i = 1, ..., µ(f), j = 1, ..., µ(g)).

For instance the spectrum of the zero dimensional singularity g(y) = y2

consists of one number {−1/2}. Thus, if the holomorphic isolated singularity

f : Cn+1 → C has spectrum {αi}, then the singularity f(x)+y2 has spectrum

{αi + 1/2}.

Theorem 6.4.7. ([SCHU] Theorem 1.8.10) The spectral pairs and numbers

are constant in a µ-constant deformation, where µ is the rank of Brieskorn

lattice.

Example 6.4.8. Consider f = x2y2 + x5 + y5 .[SCHU]

A monomial basis for the Jacobi algebra Af = C{x, y}/(∂xf, ∂yf) is given

by

B = {1, x, x2, x3, x4, y2, y3, y4, y5, xy}.

The spectral pairs are

(−1/2, 2), (−3/10, 1), (−3/10, 1), (−1/10, 1), (−1/10, 1),

(0, 1),

(1/10, 1), (1/10, 1), (3/10, 1), (3/10, 1), (1/2, 0).

They are symmetric around (0, 1). By the isomorphism

H ′′

sH ′′
∼=

Ωn+1

df ∧ Ωn
∼=

C{x, y}
(∂x(f), ∂y(f))

{gdx ∧ dy, g ∈ B} can be considered as a vector space basis of H ′′/sH ′′.

The multiplicities di appear as the dimension of (αi, li)-graded part of the

weight filtration on H ′′/sH ′′, i.e.,
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di = dimCGr
αi
V Gr

W
li

(H ′′/sH ′′).

In this example the spectral numbers are

−1/2,−3/10,−3/10,−1/10,−1/10, 0, 1/10, 1/10, 3/10, 3/10, 1/2

and all the Jordan blocks of monodromy are of size 1, except one for eigen-

value -1, which is of size two.

6.5 The form of K. Saito (duality on

Gauss-Manin module)

In this subsection we provide a definition of K. Saito higher residue pairing

on V −1. Later in Chapter 9 we generalize this definition. We define a non-

degenerate bilinear form PS on V >−1 originally due to K. Saito, [S1] and

[S2].

Definition 6.5.1. [H1], [S1] Define the bilinear form; PS : V >−1×V >−1 →
C{{∂−1

t }}∂
−1
t , as follows;

• PS(a, b) = 0, α+ β /∈ Z

• PS(a, b) = 1
(2πi)nS(ψ−1a, ψ−1b)∂−1

t , α+ β = −1.

• PS(a, b) = 1
(2πi)n+1S(ψ−1a, ψ−1b)∂−2

t , α = β = 0

• PS(g1(∂−1
t )a, g2(∂−1

t )b) = g1(∂−1
t )g2(−∂−1

t )PS(a, b)

• PS(a, b) =
∑

l≥1 P
(−l)
S , P

(−l)
S ∈ C∂−lt .

Proposition 6.5.2. [H1]

(1) PS(H ′′0 , H
′′
0 ) ⊆ C{{∂−1

t }}∂
−n−1
t that is P

(−l)
S (H ′′0 , H

′′
0 ) = 0, 1 ≤ l ≤ n

(2) P
(−n−1)
S (s[ω1], s[ω2]) = Resf (ω1, ω2)∂−n−1

t . ω1, ω2 ∈ Ωn+1
X,0

Corollary 6.5.3. [H1]
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• H ′′0 is isotropic of maximal size w.r.t the anti-symmetric bilinear form

P
(−n)
S .

• H ′′0 ⊇ V n−1, dim
( H ′′0
V n−1

)
=

1

2
dim

(V >−1

V n−1

)
.

We have the following orthogonality relations for the form Kf ;

• PS : Cα × Cβ → 0, α > −1, β > −1

• PS : Cα × Cβ → C∂−α−β−2
t , α+ β ∈ Z.

The last form is non-degenerate and (−1)α+β+n+1- symmetric, [H2].

If A ∈ He−2πiα , B ∈ He−2πiβ , α, β ∈]− 1, 0[, then

PS(s(A,α), s(B, β)) =
1

(2πi)n
S(A,B).∂t

−1, α+ β = −1

PS(s(A,α), s(B, β)) =
1

(2πi)n+1
S(A,B).∂t

−1, α = β = 0.
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Chapter 7

Quasi-homogeneous

Fibrations

In this chapter the Hodge filtration in the quasi-homogeneous case is anal-

ysed based on work of J. Steenbrink [JS7], developing that of P. Griffiths,

[G3]. The main reference of this chapter is the article of J. Steenbrink cited

above.

7.1 Weighted Projective Space

In this chapter we assume f : Cn+1 → C is a quasi homogeneous polynomial

of type (w0, ..., wn) and V ⊆ Cn+1 be defined by f = 1. Set

wi = ui/vi, (ui, vi) = 1, d = lcm(v0, ..., vn), bi = d.wi

Then

f(z0, ..., zn)− zdn+1 (7.1)

would be quasi-homogeneous of type (w0, ..., wn, 1/d). LetM be the weighted

projective space of type (w0, ..., wn, 1/d),

M = ProjC[z0, ..., zn+1] (7.2)

with deg(zi) = bi, i = 0, ...n, deg(zn+1) = 1.

M is a compactification of Cn+1 by putting Zi = zi/z
bi
n+1. Moreover, the

hyper-surface in M with equation

f(z0, ..., zn)− zdn+1 = 0
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is a compactification V̄ of V . Denote M∞ = M − Cn+1, V∞ = V̄ − V =

V̄ ∩M∞. Then M∞ is isomorphic to the weighted projective space of type

(w0, ..., wn) and V∞ ⊆M∞ is given by f(z0, ..., zn) = 0.

7.2 MHS for Quasi-homogeneous f

From now on assume f has an isolated singularity at 0. We briefly review the

work of J. Steenbrink. H i(V̄ ), H i(V∞), i ≥ 0 carry Hodge structures which

are purely of weight i. Therefore, the canonical mixed Hodge structure on

H i(V ), i ≥ 0 can be computed using the logarithmic complex Ω̄•
V̄

(log V∞)

which sits in the short exact sequence

0→ Ω̄•V̄ → Ω̄•V̄ (log V∞)→ Ω̄•−1
V∞
→ 0. (7.3)

The long exact sequence associated;

....→ H i(V̄ )→ H i(V )→ H i−1(V∞)(−1)→ H i+1(V̄ )→ . (7.4)

Let f be given by the formula f =
∑
aβz

β, β = (β0, ..., βn). We compute

the mixed Hodge structure on Hn(V ) in terms of invariants of the Artinian

ring

Af = C{z0, ..., zn}/(∂f/∂z0, ..., ∂f/∂zn)

.

Let {zα|α ∈ I ⊂ N} be a set of monomials in C{z0, ..., zn} whose residue

classes form a basis of Af . For α ∈ I, let

l(α) =

n∑
i=0

(αi + 1)wi.

Define a rational (n+ 1)-form ωα on Cn+1 by

ωα = zα(f(z)− 1)[−l(α)]dz0 ∧ ... ∧ dzn.
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Using Griffiths theory of rational integrals one associates with ωα an element

ηα of Hn(V,C). The long exact sequence 7.4 gives

GrWn H
n(V ) ∼= Hn(V̄ )0

GrWn+1H
n(V ) ∼= Hn−1(V∞)(−1)0

where

Hn(V̄ )0 = Coker(Hn−2(V∞)(−1)→ Hn(V̄ )

Hn−1(V∞)(−1)0 = ker(Hn−1(V∞)(−1)→ Hn+1(V̄ )

Assume N is a hyper-surface defined by a quasi-homogeneous polynomial

in M . By using Bott’s vanishing theorem repeatedly, one obtains identities

of the form;

F pHn−1(N,C)0
∼=

H0(M,Ωn
M ((n− p)N)

dH0(M,Ωn−1
M ((n− p− 1)N)

. (7.5)

Taking N to be V̄ and V∞ respectively, the following theorems are straight

forward coordinate calculations, [JS7].

Proposition 7.2.1. (P. Griffiths-J. Steenbrink) [JS7] If l(α) /∈ Z, then the

forms ωα with k < l(α) < k + 1 map to a basis of

H0(M,Ωn
M (kV̄ )

H0(M,Ωn+1
M (kV̄ )) + dH0(M,Ωn

M (kV̄ )
.

Proposition 7.2.2. [JS7] (P. Griffiths-J Steenbrink) If l(α) ∈ Z, define

ηα = resM∞ωα. Then the forms ηα with l(α) = k map to a basis of

H0(M∞,Ω
n
M∞

(kV∞)

H0(M∞,ΩM∞((k − 1)V∞)) + dH0(M∞,Ω
n−1
M∞

((k − 1)V∞)
.

Theorem 7.2.3. [JS7] (P. Griffiths, J. Steenbrink) Denote W and F the

weight and Hodge filtration on Hn(V,C). Then GrWk H
n(V ) = 0, for k 6=

n, n + 1. The forms ηα with p < l(α) < p + 1 form a basis for

GrpFGr
W
n H

n(V,C). The forms ηα with α = p form a basis for GrpFGr
W
n+1H

n(V,C).
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The theorem 7.2.3 is a consequence of Propositions 7.2.1 and 7.2.2.

Remark 7.2.4. The filtration

0 ⊂ H0(V, Ω̂n) ⊂ H1(V, Ω̂n−1) ⊂ ... ⊂ Hn−1(V, Ω̂1) ⊂ Hn(V, Ω̂0 = C)

where Ω̂i is the subgroup of closed forms, is exactly the Hodge filtration,

[G5].

The MHS on Hn
c (V ) is dual to Hn(V ), therefore

GrWk H
n
c (V ) = 0, k 6= n, n− 1

Wn−1H
n
c (V ) = { ω ∈ Hn

c (V )| 〈ω, η〉 = 0, ∀η ∈WnH
n(V ) }.

If i : V ↪→ V̄ is the inclusion, we have

Hn
c (V )

i∗−−−−→ Hn
c (V̄ )

j

y j̄

y∼=
Hn(V )

i∗−−−−→ Hn(V̄ )

where j is the natural map that is also a morphism of Hodge structures.

The bilinear (intersection) form on Hn
c (V ) is given by S(x, y) = 〈x, j(y)〉.

It follows that S(x, y) = 0 if x or y ∈ Wn−1H
n
c (V ). We also have S(y, x) =

(−1)n(n−1)/2S(x, y). Moreover, i∗ identifies GrWn H
W
n (V ) with the primitive

part of Hn
c (V̄ ), and hence S is described as follows on GrWn H

n
c (V ) , Denote

GrWn H
n
c (V ) = ⊕p+q=nHp,q(V )

the Hodge decomposition then,

(a) S(x, y) = 0, x ∈ Hp,q, y ∈ Hr,s, (p, q) 6= (r, s).

(b) If x ∈ Hp,q, x 6= 0 , then (−1)n(n−1)/2.ip−qS(x, x̄) > 0.
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cf. [JS7]. This Riemann-Hodge bilinear relation is the same as 3.2.1 and

5.3.4 proved before. We summarize it in the following theorem, not stated

in [JS7].

Theorem 7.2.5. (Riemann-Hodge bilinear relations) The Riemann-Hodge

bilinear relations of polarised MHS on Hn = Hn(X∞,C) where X∞ =

f−1(1) with f a quasi-homogeneous polynomial, can be explained via the

isomorphisms GrWn−1H
n
c
∼= GrWn+1H

n, GrWn H
n
c
∼= GrWn H

n by (a) and (b),

where S(x, y) := S(x, j(y)), for x, y ∈ Hn
c , and j : Hn

c → Hn the natural

map.

Corollary 7.2.6. (A. Varchenko) Suppose that n is even. Then

µ+ =
∑

q even,
p+q=n

dimHp,q, µ− =
∑
q odd,
p+q=n

dimHp,q ,

µ0 = dimGrWn+1H
n(V )

where µ+, µ− andµ0 are the number of positive, negative and zero eigen-

values of the intersection form.

Remark 7.2.7. [JS7] The l(α)’s are also the eigenvalues of the Gauss-Manin

connection, namely 5zα = l(α)zα.

7.3 Examples

(1) [JS7], fa = x3 + y3 + z3 + 3axyz, a3 6= 1

The following monomials form a basis of the Jacobi algebra

1 x y z xy xz yz xyz,

and the corresponding weights for the forms are

l(α) : 1 4/3 4/3 4/3 5/3 5/3 5/3 2.

Using theorem 7.2.3 we get
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h2,0 = h0,2 = 0, h1,1 = 6, h1,2 = h2,1 = 1.

So

µ+ = 0, µ− = 6, µ0 = 2.

(2) [KUL] When f is quasi-homogeneous of weight (w0, ..., wn) we have

the Euler relation,

f =
∑n

i=0wi.zi∂i(f)

There exists a form η such that f.dx = df ∧ η. We have the explicit

form

η =
n∑
i=0

(−1)iwi.zidz.

Second, the image of the inclusion H(−1) df
↪→ H(0) coincides with fH(0) =

tH(0), that is a sub-module of H(0) generated by the maximal ideal

(t) ⊂ OT . So by Nakayama’s Lemma, in order to find a basis ω1, ..., ωµ

of the OT module H(0), it is enough to find a basis in a vector space

f∗Ωf = Af . So if {zα} is a monomial basis for Af , then ωα = zαdz,

represents a basis of the OT -module Ωf . From f.dx = df∧η, we obtain

f.ωα = df ∧ zαη. This implies that

∂tωα =
1

f
[−ωα + d(zαη)] =

1

f
{−ωα + [

n∑
i=0

wi(mi + 1)]ωα}.

Putting

l(ωα) =
n∑
i=0

wi(mi + 1)

we then obtain

t∂t(ωα) = [l(α)− 1]ωα.
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Thus, the monodromy of a quasi-homogeneous fibration is semi-simple

with eigenvalues λα = e−2πi.l(α), where α coming from a monomial

basis of Af , the Jacobi algebra. By the isomorphism

H ′′/sH ′′ ∼= Ωn+1/df ∧ Ωn ∼= C{z}/(∂(f))

{[ωα = zαdz]} gives a vector space basis of H ′′/sH ′′.

(3) Suppose Y is a projective variety of dimension n. Then

Hn(Y,C) =

Pn(Y,C), n odd

Pn(Y,C)⊕ ωn/2, n even

where Pn = ker(. ∧ ω : Hn → Hn). On the other hand we have the

Hodge decomposition

Hn(Y,C) =
⊥⊕

0≤p≤n/2

(Hp,n−p ⊕Hn−p,p), n odd

Hn(Y,C) =
⊥⊕

0≤p≤n/2

(Hp,n−p ⊕Hn−p,p)⊕⊥ ωn/2, n even

with respect to the cup product,

S = ⊕⊥Sp :
⊕
p

(Hp,n−p ⊗Hn−p,p)→ C, Sω : Cωn/2 ⊗Cωn/2 → C

each of the forms Sp and Sω, induce a definite hermitian form on

Hn,n−p and Cω respectively.

If we are involved with a family of projective varieties parametrized

by t ∈ T , then we will obtain a family of structures as above. For

each t we can always choose a basis {εi} of Wk such that ∇(εi) = 0

and also another basis for F p satisfying Griffiths transversality. It is
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always possible to express each of these bases in terms of other one

with coefficients being multi-valued functions of t. However the total

expression for εi is uni-valued. We apply the limit definition of W.

Schmid to obtain a canonical Hodge structure compatible with usual

short exact sequences as in 4.2.

7.4 MHS via resolution of singularities

The limit Hodge structure in a projective fibration can be explained us-

ing a Hironaka resolution of singularities argument as follows. Assume the

fibration is explained by the diagram

X∞ −−−−→ U −−−−→ X ←−−−− D

f∞

y yf yf y
H

e−−−−→ ∆∗ −−−−→ ∆ ←−−−− 0

(7.6)

as in 2.9, where D =
⋃m
i Di is a normal crossing divisor.

Lemma 7.4.1. [JS3] The spectral sequence of the double complex

ApqD := (aq+1)∗Ω
p

D(q+1) , D(q+1) = qDi1 ∩ ... ∩Diq

with horizontal arrows to be the de Rham differentials, and vertical arrows∑
j(−1)q+jδj, induced by the inclusions qDi1∩...∩Diq ↪→ qDi1∩..D̂ij ..∩Diq

obtained by possible omitting the indices, on ApqD , degenerates at E2, with

Epq1 = Hq(D(p+1),C)⇒ Hp+q(D,C)

and computes the cohomologies of D. Moreover, the two filtrations

F pA..D =
⊕

r≥pA
r.
D, WqA

..
D =

⊕
s≥−q A

.s
D

induce the Hodge and the weight filtrations on Hk(D,C) for each k, to define

a mixed Hodge structure.

The above lemma is a generalization of 2.3.7, and can be obtained by an

inductive argument as well.
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Proposition 7.4.2. [JS2] The spectral sequence of Bpq := Apq/Wq degen-

erates at E2 term with

E−r,q+r1 =
⊕

k≥0,rH
q−r−2k(D(2k+r+1),C)(−r − k)⇒ Hq(X∞,C)

and equips Hq(X∞,C) with a mixed Hodge structure.

These MHS’s fit in the Clemens-Schmid exact sequence ([SP] page 285),

...→ H2n+2−m(X0)
α→ Hm(X0)

i∗t→ Hm(Xt)
N→ Hm(Xt)

β→ H2n−2m(X0)→ ...

(7.7)

with X0 = D and Xt = f−1(t) ∼= X∞, and where α is induced by Poincare

duality followed by projection , and β is by inclusion followed by Poincare

duality. The monodromy weight filtration on Hm(X0) can be described

using the hypercover structure obtained by intersections of NC divisors.

Then the weight filtration of Hm(Xt) can be computed via the induced

filtration on ker(N) := Km
t , with N is the logarithm of monodromy, and

satisfies;

GrWk H
m(Xt) ∼=

GrkKm
t ⊕Grm−2K

m
t ⊕ ...⊕Grk−2[k/2]K

m
t , k ≤ m

Gr2m−kH
m(Xt), k > m

The relations between the weight filtrations can be explained by the follow-

ings;

• i∗t induces

GrkH
m(X0) ∼= GrkK

m
t

• The following sequence is exact

0→ Grm−2K
m−2
t → Grm−2n−2H2n+2−m(X0)

α→ GrmH
m(X0)→ GrmK

m
t → 0

Then we have the long exact sequence
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...→ Hm−1(X \X0)→ Hm(X,X \X0)→ Hm(X)→ Hm(X \X0)→ ...

where the morphisms are of MHS, and the isomorphism

H2n+2−m(X,X \X0) ∼= H2n+2−m
c (X) ∼= Hm(X)∨

computes Hm(X \X0) as MHS, [MO]. The reader should convince himself

that the mixed Hodge structure defined in this section is the same as the

one in 7.2.3, and the Riemann-Hodge bilinear relations are as 3.2.1 or the

same in 5.3.4.
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Polarization of extended

fiber

Assume f : Cn+1 → C is a holomorphic germ with isolated singularity

at 0 ∈ Cn+1. The stack on 0 of the extended Gauss-Manin module can

be naturally identified with the module of relative (n + 1)-differentials Ωf .

In this chapter we show a modification of Grothendieck residue defines a

polarization for Ωf .

8.1 Steenbrink limit Hodge filtration (review)

In this section we review the Steenbrink MHS defined in 6.3.3 to fix the

notation. Suppose we have an isolated singularity holomorphic germ f :

Cn+1 → C. By the Milnor fibration Theorem we can always associate to

f a C∞-fiber bundle over a small punctured disc T ′. The corresponding

cohomology bundle H, constructed from the middle cohomologies of the

fibers defines a variation of mixed Hodge structure on T ′. The Brieskorn

lattice is defined by,

H(0) = H ′′ = f∗
Ωn+1
X,0

df ∧ dΩn−1
X,0

The Brieskorn lattice is the stack at 0 of a locally free OT -module H′′ of rank

µ with H′′T ′
∼= H, and hence H ′′ ⊂ (i∗H)0, with i : T ′ ↪→ T . The regularity

of the Gauss-Manin connection proved by Brieskorn and Malgrange implies

that H ′′ ⊂ G, cf. 6.1.

Theorem 8.1.1. (Malgrange)(see [SCHU] 1.4.10)

H ′′ ⊂ V −1
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The Leray residue formula can be used to express the action of ∂t in terms

of differential forms by

∂−1
t s[dω] = s[df ∧ ω]

.

where, ω ∈ Ωn
X cf. notation in 4.1. In particular , ∂−1

t .H ′′ ⊂ H ′′, and

H ′′

s.H ′′
∼=

Ωn+1
X,0

df ∧ Ωn
X,0

∼=
C{z}
(∂(f))

. (8.1)

In this chapter we use the notation

Ωf
∼=

Ωn+1
X,0

df ∧ Ωn
X,0

(8.2)

for the module of relative differentials of the map f . The Hodge filtration

on Hn(X∞,C) is defined by

F pHn(X∞)λ = ψ−1
α ∂n−pt Grα+n−p

V H ′′. (8.3)

cf. 6.3, where ψα was defined in 4.1 and 6.2. Therefore,

GrpFH
n(X∞,C)λ = Grα+n−p

V Ωf (8.4)

where GrβV is defined as follows,

Definition 8.1.2. (cf. [KUL] page 110) The V -filtration on Ωf is defined

by

V αΩf = pr(V α ∩H ′′) (8.5)

Clearly V αΩf = ⊕β≥αΩβ
f and Ωf

∼= ⊕GrαV Ωf hold.

8.2 Theorem of Varchenko on multiplication by f

A theorem of A. Varchenko, shows the relation between the operator N ,

on vanishing cohomology and multiplication by f on Ωf . A feature of this
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theorem appears in Theorems 8.7.1 and 8.7.5.

Theorem 8.2.1. [SC2] The maps Gr(f) and N = logMu ∈ End(Hn(X∞,C))

have the same Jordan normal forms.

Proof. The mapN is a morphism of mixed Hodge structures of type (−1,−1).

Hence, all the powers of N are strictly compatible with the filtration F (with

the appropriate shift). This implies the existence of a splitting of the Hodge

filtration, i.e a grading of Hn(X∞,C) which has F as its associated filtra-

tion, such that N becomes a graded morphism of degree −1. In particular,

one concludes that N and its induced endomorphism GrFN of degree −1 of

GrFH
n(X∞,C), have the same Jordan normal forms.

We have a canonical isomorphism

GrFH
n(X∞,C) =

⊕
−1<α≤0

GrFC
α

and the corresponding endomorphism

NF,α : GrpFC
α → Grp−1

F Cα

are given by

Np,α(x) = −2πi(t∂t − α)x ∼= −2πi.t∂tx ( mod F p)

On the other hand, it is immediately seen that for β ∈ Q, β = n − p + α

with p ∈ Z and −1 < α ≤ 0, the map

∂n−pt : V β ∩ FnHX,0 → V α/V >α = Cα

induces an isomorphism from GrVβ Ωf → GrpFC
α, and the diagram

GrVβ Ωf
Gr(f)−−−−→ GrVβ+1Ωf

∂n−pt

y ∂n−p+1
t

y
GrpFC

α Np,a−−−−→ Grp−1
F Cα

commutes up to a factor of −2πi. Hence Gr(f) and GrFN have the same

Jordan normal form.

108



Chapter 8. Polarization of extended fiber

8.3 Integrals along Lefschetz thimbles

Consider the function f : Cn+1 → C with isolated singularity at 0, and

a holomorphic differential (n + 1)-form ω given in a neighborhood of the

critical point. We shall study the asymptotic behaviour of the integral,∫
Γ
eτfω (8.6)

for large values of the parameter τ , namely a complex oscilatory integral. In

the long exact homology sequence of the pair (X,Xt) where X is a tubular

neibourhood of the singular fiber X0 in the Milnor ball,

...→ Hn+1(X)→ Hn+1(X,Xt)
∂t→ Hn(Xt)→ Hn(X)→ ... (8.7)

X is contractible. Therefore, we get an isomorphism ∂t : Hn+1(X,Xt) ∼=
Hn(Xt), and similar in cohomologies, i.e. Hn+1(X,Xt) ∼= Hn(Xt). Now if

ω is a holomorphic differential (n+ 1)-form on X, and let Γ ∈ Hn+1(X,Xt),

we have the following;

Proposition 8.3.1. (cf. [AGV] Theorems 8.6, 8.7, 8.8, 11.2)

Assume ω ∈ Ωn+1, and let Γ ∈ Hn(X,Xt). Then

∫
Γ
e−τfω =

∫ ∞
0

e−tτ
∫

Γ∩{f=t}

ω

df |Xt
dt = eτ.f(0)

∫
Γ∩{f=t}

ω

df |Xt
(8.8)

for Re(τ) large, and in this way can also be expressed as
∑
ταlog τkAα,k in

that range.

By theorem 8.3.1, we identify the cohomology classes

∫
Γ
e−τfω and

∫
Γ∩{f=t}

ω

df |Xt
via integration on the corresponding homology cycles. We can also choose Γ

such that its intersection with each Milnor fiber has compact support, and

its image under f is the positive real line, [PH]. We use these facts in the

proof of theorem 8.6.1.

The asymptotic integral
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I(τ) =

∫
eτfφdx0...dxn, τ → ±∞

satisfies

dp

dτp
I =

∫
eτffpφdx0...dxn

In case f is analytic then it has an asymptotic expansion

I(τ) =
∑
α,p,q

cα,p,q(f)τα−p(log τ)q, τ → +∞

for finite number of rational numbers α < 0, p ∈ N, 0 ≤ q ≤ n − 1 . Then

φ → cα,p,q(φ) is a distribution with support contained in the support of f ,

[MA].

Remark 8.3.2. (see [PH] page 27) We have the formula;

I(τ) = (2π)n/2(Hessf)−1/2f(0)τ−n/2[1 +O(1/τ)]

Summarizing, the form e−τfω (for τ large enough) and the form
ω

df
|Xt ,

define the same cohomology classes via integration on cycles. We will use

this fact together with the following proposition in the proof of Theorem

8.6.1.

Proposition 8.3.3. ([AGV] lemma 11.4, 12.2, and its corollary) There

exists a basis ω1, ..., ωµ of Ωf such that the corresponding Leray residues

ω1/df, ..., ωµ/df define a basis for the sections of vanishing cohomology.

8.4 Extension of the Gauss-Manin system

In this section we explain the extension of the Gauss-Manin system of an

isolated hypersurface singularity. We conclude that the module Ωf (module

of relative (n + 1)-differential forms of f) can be canonically regarded as

the fiber over the puncture. This is an example of minimal extension of

polarized variation of mixed Hodge structure, and should not be confused
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with Deligne extension. For simplicity, we explain it for the algebraic Gauss-

Manin system associated to a polynomial f . The conclusion also holds in the

analytic setting i.e. with f holomorphic, see for instance [MA] or [S1]. The

difference is that in analytic set up one needs to consider the completions of

the modules we are considering with respect to appropriate filtrations. Thus

we follow ([SA6] page 6, [SA8] sec 3, see also [SA5]) in order to explain the

gluing procedure which defines an extension of the Gauss-Manin system G.

By this we mean to glue the Gauss-Manin system G defined before with

another one defined in a chart around 0. We are interested to understand

the fiber G on 0 after the extension.

The Gauss-Manin system G := Rnf∗CX′ (see Theorem 6.3.7) of a poly-

nomial or holomorphic map f : X ′ → T ′ is a module over the ring C[τ, τ−1],

where τ is a new variable, and comes equipped with a connection, that we

view as a C-linear morphism ∂τ : G→ G satisfying Leibnitz rule

∂τ (φ.g) =
∂φ

∂τ
.g + φ∂τ (g)

We put τ = t−1, and consider (τ, t) as coordinates on P1 . Then G is a

C[t, t−1]-module with connection and ∂τ = −t2∂t, [SA6], [SA5], [SA8].

Let Ωn+1[τ, τ−1] be the space of Laurent polynomials with coefficients

in Ωn+1. According to its very definition (cf. Theorem 6.3.7, [SP] sec. 10.4,

[SAI6] lemma 2.4), the Gauss-Manin System is given by;

G =
Ωn+1[τ, τ−1]

(d− τdf∧)Ωn+1[τ, τ−1]
,

(d− τdf∧)
∑

k ηkτ
k =

∑
k(dηk − df ∧ ηk−1)τk

The action of the connection ∇τ on G i.e. the C[τ ]〈∂τ 〉-module structure on

G, is first defined on the image of Ωn+1 by

∂τ [ω] = [fω]

and then extended to G using the Leibnitz rule

∂τ (τp[ω]) = pτp−1[ω] + τp[fω]
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In order to extend it as a rank µ-vector bundle on P1, one is led to study

lattices i.e. C[τ ], and C[t]-submodules which are free of rank µ.

In the chart t, the Brieskorn lattice

G0 = image(Ωn+1[τ−1]→ G) =
Ωn+1[t]

(td− df∧)Ωn+1[t]

is a free C[t] module of rank µ. It is stable by the action of ∂τ = −t2∂t.
Therefore ∂t is a connection on G with a pole of order 2. We consider the

increasing exhaustive filtration Gp := τpG0 of G.

In the chart τ , there are various natural lattices indexed by Q, we denote

them by V α, with V α−1 = τV α. On the quotient space Cα = V α/V >α there

exists a nilpotent endomorphism (τ∂τ − α).

The space ⊕α∈[0,1[Cα is isomorphic to Hn(X∞,C) cf. def. 4.1, or the same

6.1, and ⊕α∈[0,1[F
pCα is the limit MHS on Hn(X∞,C), cf. 8.1 and 6.3. A

basic isomorphism can be constructed cf. Theorem 6.4.5, as

Gp ∩ V α

Gp−1 ∩ V α + Gp ∩ V >α
= Grn−pF (Cα)

τp
y∼=

V α+p ∩ G0

V α ∩ G−1 + V >α ∩ G0
= GrVα+p(G0/G−1)

Thus, the gluing is done via the isomorphisms,

Grn−pF (Hλ) ∼= GrVα+p(H
(0)/τ−1.H(0)), H(0) = G0

where λ = exp(2πiα) and we have chosen −1 ≤ α < 0 (cf. [SA3], [SA5],

[SA6]). We have

H(0)

τ−1.H(0)
=

Ωn+1

df ∧ Ωn
= Ωf (8.9)

canonically. We conclude that;

Theorem 8.4.1. The identity

H(0)

τ−1.H(0)
=

Ωn+1

df ∧ Ωn
= Ωf
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defines the extension fiber of the Gauss-Manin system of the isolated singu-

larity f : Cn+1 → C.

The same conclusion can be obtained when f is a holomorphic germ, How-

ever one needs to consider the completions of the modules involved, (see

[MA] page 422 or [S1]). In this way for f : Cn+1 → C we have;

Ĥ ′′

τ−1Ĥ ′′
∼= Ωf

.

By identifying the sections with those of relative cohomology, via section

8.3, this formula is a direct consequence of the formula∫
Γ
e−τfdω = τ

∫
Γ
e−τfdf ∧ ω, ω ∈ Ωn

X

We refer to [MA] page 422 for details on this (see also section 10.2).

8.5 MHS on the extended fiber

Asuume f : Cn+1 → C is a germ of isolated singularity. In this section we

build an isomorphism

Φ : Hn(X∞,C)→ Ωf

which allows us to equip a mixed Hodge structure on Ωf , [H1], [SAI6].

This also motivates the definition of opposite filtrations. It is based on the

following theorem.

Proposition 8.5.1. ([H1] prop. 5.1) Assume {(αi, di)} is the spectrum of

a germ of isolated singularity f : Cn+1 → C. There exists elements si ∈ Cαi

with the properties

(1) s1, ..., sµ project onto a C-basis of
⊕
−1<α<nGr

α
VH

′′/GrαV ∂
−1
t H ′′.

(2) sµ+1 := 0; there exists a map ν : {1, ..., µ} → {1, ..., µ, µ + 1} with

(t− (αi + 1)∂−1
t )si = sν(i)
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(3) There exists an involution κ : {1, ..., µ} → {1, ..., µ} with κ = µ+ 1− i
if αi 6= 1

2(n− 1) and κ(i) = µ+ 1− i or κ(i) = i if αi = 1
2(n− 1), and

PS(si, sj) = ±δ(µ+1−i)j .∂
−1−n
t

.

Condition (1) implies

GrαV ∂
q
tH
′′ =

⊕
αi−p=α, p≤q

C.∂pt .si

Condition (2) can be replaced by

[(2’)] (t− (αi + 1)∂−1
t )si ∈

⊕
αj=αi+1 C.sj

in which case the involution κ(i) = µ − i + 1 for any i. The proof of the

proposition 8.5.1 concerns with the construction of a C-linear isomorphism

as follows. Suppose,

Hn(X∞,C) =
⊕
p,q,λ

Ip,qλ

is the Deligne-Hodge bigrading, and generalized eigen-spaces of vanishing

cohomology cf. 3.3.3, and also λ = exp(−2πiα) with α ∈ (−1, 0]. Consider

the isomorphism obtained by composing the three maps,

Φp,q
λ : Ip,qλ

Φ̂λ−→ Grα+n−p
V H ′′

pr−→ Gr•VH
′′/∂−1

t H ′′
∼=−→ Ωf (8.10)

where

Φ̂p,q
λ := ∂p−nt ◦ ψα|Ip,qλ

Φ =
⊕

p,q,λ Φp,q
λ , Φp,q

λ = pr ◦ Φ̂p,q
λ

ψα is the isomorphism defined in section 6.1.

Lemma: The map Φ is a well-defined C-linear isomorphism.
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We list some of the properties of the map φ as follows;

• Φ̂p,q
λ takes values in Cα+n−p. By the formula F p = ⊕r≥pIr,s, any coho-

mology class in Ip,qλ , is of the form ψ−1
α [∂n−pt h′′+V >α] = ψ−1

α ∂n−pt [h′′+

V >α+n−p], for h′′ ∈ H ′′, cf. def. 6.3.3. By substituting in the formula

it explains the image of Φ̂p,q
λ .

• Taking two different representatives ω1, ω2 ∈ Ωn+1
X for h′′ does not

effect on the class h′′ + V >α+n−p. Because by identifying H ′′ with its

image in V −1, the difference ω1 − ω2 belongs to V >α+n−p.

• The map Φ is obviously a C-linear isomorphism because both of the

ψα and ∂−1
t are C-linear isomorphisms on the appropriate domains,

and

Φ(Ip,qλ ) ⊂ Φ(F pHn(X∞)λ) ⊂ V α ∩H ′′/V α+1 ↪→ grαVH
′′/∂−1

t H ′′

• The definition of Φ concerns with an isomorphism Gr•V Ωf
∼= Ωf . On

the eigen space Hλ this corresponds to a choice of sections of

GrαV [V α ∩H ′′]→ GrαV [H ′′/∂−1
t H ′′]

for −1 ≤ α < 0.

Definition 8.5.2. (MHS on Ωf ) The mixed Hodge structure on Ωf is de-

fined by using the isomorphism Φ. This means that

Wk(Ωf ) = ΦWkH
n(X∞,Q), F p(Ωf ) = ΦF pHn(X∞,C)

and all the data of the Steenbrink MHS on Hn(X∞,C) such as the Q or R-

structure is transformed via the isomorphism Φ to that of Ωf . Specifically;

in this way we also obtain a conjugation map

.̄ : Ωf,Q ⊗ C→ Ωf,Q ⊗ C, Ωf,Q := ΦHn(X∞,Q) (8.11)

defined from the conjugation on Hn(X∞,C) via this isomorphism.
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The basis discussed in 8.5.2 is usually called a good basis. The condition

(1) correspond to the notion of opposite filtrations. Two filtrations F and

U on H are called opposite (cf. [SAI6] sec. 3) if

GrFp Gr
q
UH = 0, for p 6= q

When one of the filtrations is decreasing say {F p} and the other increasing

say {Uq} then this is equivalent to

H = F p ⊕ Up−1, ∀p, (8.12)

Similarly, two decreasing filtrations F and U are said to be opposite if F is

opposite to the increasing filtration U ′q := Uk−q, [P2].

Proposition 8.5.3. ([SAI6] prop. 3.5) The filtration

UpCα := Cα ∩ V α+pH ′′

is opposite to the Hodge filtration F on G.

By this theorem the two filtrations F p and

U ′q := Un−q = ψ−1{⊕αCα ∩ V α+n−qH ′′} = ψ−1{⊕αGrαV [V α+n−qH ′′]}

are two opposite filtrations on Hn(X∞,C). We also have

F pHn(X∞,C)λ ∼= U ′pH
n(X∞,C)

A standard example of such a situation is when the variation of MHS namely

H is mixed Tate (also called Hodge-Tate). By definition a mixed Tate Hodge

structure H is when GrW2l−1H = 0 and GrW2l H = ⊕iQ(−ni). In that case

one easily shows the Deligne-Hodge decomposition becomes

⊕
p

(W2p ∩ F p)H = HC

and the two filtrations F and W are opposite. In a pure Hodge structure H

of weight n one has
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GrFp Gr
F
q H = 0 unless p+ q = n

In other words, the two filtrations F • and F
n−•

are opposite in this case.

Proposition 8.5.4. ([SAI6] Theorem 3.6) There is a 1-1 correspondence

between the opposite filtrations and the sections s : H ′′/∂−1
t H ′′ → H ′′ com-

patible with the conditions of theorem 8.5.1

In our situation this amounts to a choice of a section s : H ′′/∂−1
t H ′′ → H ′′ of

the projection pr : H ′′ → H ′′/∂−1
t H ′′ such that the submodule generated by

Image(s) is ⊕α(H ′′∩Cα). Note also that V αH ′′ is the submodule generated

by s(V αΩf ).

The data of an opposite filtration in a VMHS is equivalent to give a linear

subspace L ⊂ G such that:

• G = H(0) ⊕ L and

• t−1 : L→ L.

• t∂t : L→ L.

It is the same as choosing a section to the projection (cf. [SAI6], [H1],

[LLS]);

H(0) → H(0)/t.H(0). (8.13)

Example 8.5.5. This example is taken from [SAI6]. If n is even, the duality

S on H4(X∞,C)1 is anti-symmetric. Assume Hn(X∞,C)1 = H ′ ⊕H ′′ as a

direct sum of MHS, compatible with S and N , where

H ′ = ⊕0≤i≤3H
′
i, H ′i = Q(−i− (n− 2)/2),

NH ′i = H ′i−1(i > 0)

H ′′ = ⊕0≤i≤2H
′′
i , H ′′i = Q(−i− (n− 2)/2),

NH ′′2 = H ′′1 , NH
′′
1 = NH ′′0 = 0

and
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S(H ′, H ′′) = 0

S(H ′i, H
′
j) 6= 0, only when i+ j = 3

S(H ′′i , H
′′
j ) 6= 0, only when i+ j = 2

Then we have H ′i = F pW2pH
′ for p = i+(n−2)/2 and we obtain a filtration

U opposite to F on H ′ ⊕ H ′′ compatible with S. If we choose generators

as H ′i =< ei >, H
′′
i =< fi > such that S(e0, e3) = S(f1, f2). then the

splitting F pW−2p, p = i + (n − 2)/2 is generated by < e3 > (i = 3), <

e2, f2 + e3 >, (i = 2) and < e1, f1 > (i = 1), < e0 − f1 >, (i = 0). By this

the aforementioned Deligne-Hodge decomposition becomes,

H4(X∞,C)1 =< e3 > ⊕ < e2, f2 + e3 > ⊕ < e1, f1 > ⊕ < e0 − f1 >

For the corresponding section we have

PS(Im(v), Im(v)) ⊂ C∂−1−n
t

The situation explained in this example appears for the singularity f =

x10 + y10 + z10 + w10 + (xyzw)2 + v2, cf. [SAI6] page 60.

Remark 8.5.6. ([SAI6] page 42) By definition we have the isomorphism

Hn(X∞,C)λ ∼= grαVH
′′, −1 ≤ α < 0

It is compatible with the Hodge filtrations;

F pHn(X∞,C)λ ∼= ∂n−pt grαVH
′′

In general

H ′′ ∩ V αG 6= (H ′′ ∩ V α) + (H ′′ ∩ V >α)

This is why we have to take GrαV
∼= Cα.

Remark 8.5.7. The complex structure defined on Ωf via Φ : Hn(X∞) ∼= Ωf

is not unique, and it depends to the good basis chosen, or the section of
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H ′′ → H ′′/∂−1
t H ′′. However it does not affect the polarization, discussed in

the next section.

8.6 Polarization form on extension

Assume f : Cn+1 → C is a germ of isolated singularity. We use the isomor-

phism Φ : Hn(X∞,C) → Ωf introduced in the previous section to express

a correspondence between polarization form on vanishing cohomology and

the Grothendieck pairing on Ωf .

Theorem 8.6.1. [1] Assume f : (Cn+1, 0)→ (C, 0), is a holomorphic germ

with isolated singularity at 0. Then, the isomorphism Φ makes the following

diagram commutative up to a complex constant;

R̂esf,0 : Ωf × Ωf −−−−→ Cy(Φ−1,Φ−1)

y×∗
S : Hn(X∞)×Hn(X∞) −−−−→ C

∗ 6= 0 (8.14)

where X∞ and S are as in section 5.2, Lemma 5.2.1 and

R̂esf,0 = resf,0 (•, C̃ •)

and C̃ is defined relative to the Deligne decomposition of Ωf , via the iso-

morphism Φ. If Jp,q = Φ−1Ip,q is the corresponding subspace of Ωf , then

Ωf =
⊕
p,q

Jp,q C̃|Jp,q = (−1)p (8.15)

In other words;

S(Φ−1(ω),Φ−1(η)) = ∗ × resf,0(ω, C̃.η), 0 6= ∗ ∈ C (8.16)

Part of this proof is given in [CIR] for homogeneous fibrations in the context

of mirror symmetry, see also [PH].

Proof. Before starting the proof lets mention that the map Φ is classically
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used to correspond the mixed Hodge structure on Hn(X∞,C) and Ωf . We

only prove the correspondence on polarizations.

Step 1: Choose a C-basis of the module Ω(f), namely {φ1, ..., φµ}, where

φi = fi.dx. We identify the class [e−f/tφi] with a cohomology class in

H(Xt). We may also choose the basis {φi} so that the forms {ηi = e(−f/t)φi}
correspond to a basis of vanishing cohomology, by the formula∫

Γ
e−τfω =

∫ ∞
0

e−tτ
∫

Γ∩Xt

ω

df
|Xt (8.17)

Step 2: In this step, we restrict the cup product to Hn(Xinfty,C)6=1, and

assume the Poincarè product is non-degenerate. By this assumption and

theorems 4.3.1, 4.3.2, we may also assume f is homogeneous of degree d and

φi’s are chosen by homogeneous basis of Ωf , via theorem 7.2.3. Consider

the Morse deformation

fs = f +

n∑
i=0

sixi

and set

Sij(s, z) := 〈[e−fs/zφi], [e+fs/zφj ]〉.

The cup product is the one on the relative cohomology, and we may consider

it in the projective space Pn+1. The perturbation fs and also the Saito form

Sij are weighted homogeneous. This can be seen by choosing new weights,

deg(xi) = 1/d, deg(si) = 1− 1/d, and deg(z) = 1 then the invariance of the

product with respect to the change of variable x → λ1/dx, z → λz, shows

that Sij(s, z) is weighted homogeneous. We show that Sij is some multiple

of R̂esf,0.

Sij(s, z) := (−1)n(n+1)/2(2πiz)n+1(Resf (φi, φj) +O(z)).

Suppose that s is generic so that x → Re(fs/z) is a Morse function. Let

Γ+
1 , ...,Γ

+
µ , (resp. Γ−1 , ...,Γ

−
µ ) denote the Lefschetz thimbles emanating from

the critical points σ1, ..., σµ of Re(fs/t) given by the upward gradient flow

(resp. downward). Choose an orientation so that Γ+
r .Γ
−
s = δrs. We have
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Sij(s, z) =

µ∑
r=1

(

∫
Γ+
r

e−fs/zφi)(

∫
Γ−r

efs/zφj)-

For a fixed argument of z we have the stationary phase expansion as z → 0.

(

∫
Γ+
r

e−fs/zφi) ∼= ±
(2πz)(n+1)/2√
Hessfs(σr)

(fi(σr) +O(z))

where φi = fi(x)dx. Therefore,

Sij(s, z) = (−1)n(n+1)/2(2πiz)n+1

µ∑
r=1

(
fi(σr)fj(σr)

Hess(fs)(σr)
+O(z))

where the lowest order term in the right hand side equals the Grothendieck

residue. As this holds for an arbitrary argument of z, and Sij is holomorphic

for z ∈ C∗; the conclusion follows for generic s. By analytic continuation

the same holds for all s. By homogenity we get,

Sij(0, z) = (−1)n(n+1)/2(2πiz)n+1Resf (φi, φj). (8.18)

Note that there appears a sign according to the orientations chosen for the

integrals; however this only modifies the constant in the theorem. Thus, we

have;

Sij(0, 1) = (−1)n(n+1)/2(2πi)n+1Resf (φi, φj). (8.19)

Step 3: The sign appearing in residue pairing is caused by compairing the

two products

(e−fφi, e
−fφj), (e−fφi, e

+fφj). (8.20)

Assume we embed the fibration in a projective one as before, replacing f

with a homogeneous polynomial germ of degree d. We can consider a change

of variable as I : z → eπi/dz which changes f by −f . Thus this map is an

involution on the value of f . Now consider the degree defined in Chapter 7

explaining the cohomology bases in GrpFGr
W
n+1H

n ⊂ Ip,q. If φi = fidz, with

fi homogeneous and chosen as Chapter 7, with p ≤ deg(φi) = l(φi) < p+ 1

as in Theorem 7.2.3. This shows the cohomology class e−fφj after the this

change of variable is replaced by cp.e
+fφj where cp ∈ C only depends to
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the Hodge filtration (defined by degree of forms). By the above change of

variable we obtain;

(e−fφi, I
∗e−fφj) = (e−fφi, (−1)deg[φj ]/de+fφj) (8.21)

because Id = id, if we iterate I∗, d times we obtain;

(e−fφi, e
−fφj) = resf,0(a , (−1)(d−1) deg[φj ]/d.b)

The Riemann-Hodge bilinear relations in H6=1 implies that, the products of

the forms under consideration is non-zero except when the degrees of φi and

φj sum to n, cf. 7.3. This explains the formula in H6=1. The above argument

will still hold when the form is replaced by (•, NY •), by the linearity of NY .

Thus, we still have the same result on H 6=1.

Step 4: In case the Poincarè product is degenerate, we still assume f is

homogeneous but we change the cup product by applying NY on one com-

ponent. The relation

SY (Φ−1(ω),Φ−1(η)) = ∗. R̂es(a , C̃.b), ∗ 6= 0, a, b ∈ Ωf, 6=1

proved on Hn(X∞)6=1 or more generally when the cup product of the coho-

mology is non-degenerate is generic. By this we mean; the same relation can

be proved between the level form SY (•, NY •), and the corresponded local

residue when the former form is non-degenerate i.e,

SY (Φ−1(ω), NY .Φ
−1(η)) = ∗. R̂es(a , f.C̃.b), ∗ 6= 0, a, b ∈ Ωf,1

where f is the nilpotent transformation corresponded to NY via Φ.

Step 5: By theorem 5.3.1, continuity of Grothendieck residue, [G3] page

657, and the corollary in [V] sec. 3 page 37, after embedding of the Milnor

fibration of f into that of fY by 4.2, the Grothendieck pairing for fY is the
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prolongation of that of f .

Step 6: Until now we have proved the relation

S(Φ−1(ω),Φ−1(η)) = ∗ × resfY ,0(ω, (−1)p(d−1)/d.η), 0 6= ∗ ∈ C (8.22)

For some d and moreover, d can be as large as we like. Because the left

hand side is independent of d, if we let d → ∞ then by Step 5 we obtain

(8.16).

Remark 8.6.2. ([PH] page 37) Setting

ψis(ω, τ) =

∫
Γ(i)

e−τfω

ψ̄is(ω
′, τ) =

∫
Γ′(i)

e+τfω′

with ζ = ω
df , ζ

′ = ω′

df , the expression (which is the same as in the proof)

Ps([ζ], [ζ ′])(τ) =

µ∑
i=1

ψis(τ, ω)ψ̄is(τ, ω
′) =

∞∑
r=0

P rs ([ζ], [ζ ′])(τ).τ−n−r (8.23)

is a presentation of K. Saito higher residue pairing.

Corollary 8.6.3. Assume f : Cn+1 → C is an isolated singularity germ.

The polarization form of the MHS of vanishing cohomology and the modified

residue pairing on the extended fiber Ωf are given by the same matrix in

corresponding bases.

Example 8.6.4. We try to explain the situation of Theorem 8.6.1 and its

proof in the quasi-homogeneous case. We keep the notation of Chapter 7

for the MHS on Hn(X∞,C), i.e the Hodge filtration given by the degree

of forms in the weighted projective space. Thus, we consider the weight

filtration as

0 = Wn−1 ⊂Wn ⊂Wn+1 = Hn(X∞,C)
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where X∞ is explained as the generic fiber f−1(1) of a quasi homogeneous

polynomial f in weighted degrees (w1, ..., wn). Assume {φ1, ..., φµ} be a

basis for Ωf as in 8.3.3 which is the same as the proof of 8.6.1, step 1. Then

by Theorem 7.2.3 (and the same situation in step 2 and 3), we consider the

corresponding Leray residues

ηi = ci.Resf=1(
φi

(f − 1)l(i)
)

Here ci ∈ C is a normalizing constant. It can be calculated according to the

oscillatory integration formulas in 8.3, or the following lemma.

Lemma 8.6.5. ([CIR] page 59) Under the isomorphism Hn+1(X,Xt) ∼=
Hn(Xt) explained in 8.3, the class representing e−fφi corresponds to ηi,

defined above.

As in step 1, let Γ be a Lefschetz thimble for f , i.e. a homology cycle in

Hn+1(X) which projects on the positive real line under f (We may also as-

sume the intersection of Γ with any fiber of f has compact support, and this

is the situation explained in the beginning of [PH]). Assume Γ corresponds

to C ∈ Hn(X∞) under the dual isomorphism Hn+1(X,Xt) ∼= Hn(Xt). Then,∫
Γ
e−fφi =

∫ ∞
0

etP (t)dt

where

P (t) =

∫
Γ∩Xt

φi
df

=
1

2πi

∫
T

φi
f − t

and T is a circle bundle over Γ ∩ Xt. Using the homogenity, under the

coordinate change xi → t−wi/dxi, we get P (t) = tl(i)−1P (1). Therefore∫
Γ
e−fφi = Γ(l(i))P (1) =: ci

By differentiating the defining equation for P (t) and setting t = 1, one

obtains
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ci =

∫
C
ηi

This proves the lemma. Then, what we said in the step 3, says

S(ηi, ηj) = ∗ × resf,0(φi, C̃φj)

According to the above description the isomorphism Φ is as follows,

Φ−1 : [zidz] 7−→ ci.[resf=1(zidz/(f − 1)[l(i)])]

with ci ∈ C, and zi in the basis mentioned above (see [CIR], Appendix A).

For instance by taking f = x3 + y4, then as basis for Jacobi ring, we choose

zi : 1, y, x, y2, xy, xy2

which correspond to top forms with degrees

l(i) : 7/12, 10/12, 11/12, 13/12, 14/12, 17/12

respectively. The above basis projects onto a basis⊕
−1<α=l(i)−1<n

GrVαH
′′ � GrV Ωf

as in Theorem 8.5.1. The Hodge filtration is explained as follows. First we

have h1,0 = h0,1 = 3. Therefore, because Φ is an isomorphism.

< 1.ω, y.ω, x.ω >= Ω0,1
f , < y2.ω, xy.ω, xy2.ω >= Ω1,0

f

where ω = dx∧dy, and the Hodge structure is pure, because GrW2 Hn(X∞) =

0, by 7.2.3.

< 1.dx ∧ dy, y.dx ∧ dy, x.dx ∧ dy > =

< c1.xy
2.dx ∧ dy, xy.dx ∧ dy, y2.dx ∧ dy >

In general in order to be able to understand the conjugation operator,

one needs to understand how it applies to elementary sections of Deligne

extension (see the discussion in 10.1, and the example there).
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8.7 Riemann-Hodge bilinear relations for

Grothendieck pairing on Ωf

The isomorphism Φ : Hn(X∞,C)→ Ωf transforms the mixed Hodge struc-

tures already defined for Hn(X∞) to Ωf . It makes a correspondence between

the Deligne-Hodge decompositions and also the Lefschetz decompositions.

We use this to organize the polarization on the fiber Ωf .

Theorem 8.7.1. Assume f : Cn+1 → C is a holomorphic isolated singu-

larity germ. The modified Grothendieck residue provides a polarization for

the extended fiber Ωf , via the aforementioned isomorphism Φ. Moreover,

there exists a unique set of forms {R̂esk} polarizing the primitive subspaces

of GrWk Ωf providing a graded polarization for Ωf .

Proof. Because Hn(X∞) is graded polarized, hence using theorem 8.6.1 Ωf

is also graded polarized via the isomorphism Φ. By the Mixed Hodge Metric

theorem 3.4, the Deligne-Hodge decomposition;

Ωf =
⊕
p,q

Jp,q (8.24)

is graded polarized and there exists a unique hermitian form; R with,

ip−qR(v, v̄) > 0, v ∈ Jp,q (8.25)

and the decomposition is orthogonal with respect to R. Here the conjugation

is that in 8.10. This shows that the polarization forms {R̂esl} are unique if

exist.

Let N := logMu be the logarithm of the unipotent part of the monodromy

for the Milnor fibration defined by f . We have

GrWl H
n(X∞) =

⊕
r

N rPl−2r, Pl := kerN l+1 : GrWl H
n → GrW−l−2H

n

and the level forms
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Sl : Pl ⊗ Pl → C, Sl(u, v) := S(u,N lv)

polarize the primitive subspaces Pl cf. 3.1.2. By using the isomorphism Φ,

similar type of decomposition exists for Ωf . That is the isomorphic image

P ′l := Φ−1Pl satisfies

GrWl Ωf =
⊕
r

N rP ′l−2r, P ′l := ker fl+1 : GrWl Ωf → GrW−l−2Ωf

and the level forms

R̂esl : P ′l ⊗ P ′l → C, R̂esl := R̂es(u, flv)

polarize the primitive subspaces P ′l , where f is the map induced from mul-

tiplication by f on GrWl Ωf . Specifically, this shows

• R̂esl(x, y) = 0, x ∈ P ′r, y ∈ P ′s, r 6= s

• Const× R̂esl(Clx, flx̄) > 0, 0 6= x ∈ P ′l
where Cl is the corresponding Weil operator cf. 2.2.8.

Remark 8.7.2. Let G be the Gauss-Manin system associated to a polarized

variation of Hodge structure (LQ,∇, F, S) of weight n, with S : LQ⊗LQ →
Q(−n) the polarization. Then we have the isomorphism

⊕
k∈Z

GrkFG→
⊕
k∈Z

HomOX (Grn−kF G,OX) (8.26)

given by (up to a sign factor) λ→ S(λ,−), for λ ∈ GrkFG.

Remark 8.7.3. The contribution behind Theorems 8.6.1 and 8.7.1 is some

more than what one directly obtains from the proposition 6.5.2 or more

complete form of that 10.2.6 in property 5. Drawing out the polarization

form S from the K. Saito form PS (or the same Kf ) to obtain positivity
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part of Riemann-Hodge bilinear relations seems not to be very direct. This

is because the variable t or ∂t in the two mentioned theorems is quite twisted.

The following corollary is easily obtained in the course of the proof of The-

orem 8.7.1.

Corollary 8.7.4. The polarization S of Hn(X∞) will always define a polar-

ization of Ωf , via the isomorphism Φ. In other words S is also a polarization

in the extension, i.e. of Ωf .

Using this corollary and summing up all the material in 8.5, 8.6 and 8.7,

we can give the following picture for the extension of PVMHS associated to

isolated hypersurface singularity.

Theorem 8.7.5. Assume f : Cn+1 → C is a holomorphic hypersurface germ

with isolated singularity at 0 ∈ Cn+1. Then the variation of mixed Hodge

structure defined in 4.2 is polarized by 5.2.2. This VMHS can be extended

to the puncture with the extended fiber isomorphic to Ωf in the sense of 8.4

and 8.5, and it is polarized by 8.4.7. The Hodge filtration on the new fiber

Ωf correspond to an opposite Hodge filtration on Hn(X∞,C) in the way

explained in 8.5.3.

The Riemann-Hodge bilinear relations for the MHS on Ωf and its polar-

ization R̂es is that of an opposite MHS to (Hn(X∞), S). One formally can

formulate the following R-H bilinear relations for R̂es, cf. prop. 3.1.2, 3.1.4

and 3.1.5.

Corollary 8.7.6. (Riemann-Hodge bilinear relations for Ωf ) Assume f :

Cn+1 → C is a holomorphic germ with isolated singularity. Suppose f is the

corresponding map to N on Hn(X∞), via the isomorphism Φ. Define

Pl = PGrWl := ker(fl+1 : GrWl Ωf → GrW−l−2Ωf )

Going to W -graded pieces;

R̂esl : PGrWl Ωf ⊗C PGr
W
l Ωf → C (8.27)
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is non-degenerate and according to Lefschetz decomposition

GrWl Ωf =
⊕
r

frPl−2r

we will obtain a set of non-degenerate bilinear forms,

R̂esl ◦ (id⊗ fl) : PGrWl Ωf ⊗C PGr
W
l Ωf → C, (8.28)

R̂esl = resf,0 (id⊗ C̃. fl) (8.29)

where C̃ is as in 8.6.1, such that the corresponding hermitian form associated

to these bilinear forms is positive definite. In other words,

• R̂esl(x, y) = 0, x ∈ Pr, y ∈ Ps, r 6= s

• If x 6= 0 in Pl,

Const× resf,0 (Clx, C̃. f
l.x̄) > 0

where Cl is the corresponding Weil operator, cf. 2.2.8, and the conju-

gation is as in 8.10.

Proof. This follows directly from 3.1.2, 3.1.4, 3.1.5, 8.6.1 and 8.7.1.

Note that the map

Af =
OX

∂f
→ Ωf , f 7→ fdx0...dxn

is an isomorphism. Thus, the above corollary would state similarly for Af .

Remark 8.7.7. The example in 8.6.5 clearly explains how to formulate the

aforementioned Riemann-Hodge bilinear relations in the quasi-homogeneous

case. In the quasi-homogeneous case comparing with example 8.6.4, the

above corollary is an analogue of the description after the remark 7.2.4 in

Chap. 7.
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8.8 Real Structure vs real splitting

In this section we show the possibility to modify the Hodge filtration in the

commutative diagram of Theorem 8.6.1 in a way to obtain a real split MHS

cf. def. 3.3.6. This is interesting from representation theory point of view

relevant to sl2-orbit theorem of W. Schmid in 3.5. In the following we work

with a MHS (H,F,W ) and g = gl(H) = EndC(H), where consider gr,s as

in 3.16. We begin by the following theorem.

Theorem 8.8.1. ([CKS] sec. 2) Given a mixed Hodge structure (W,F ),

there exists a unique δ ∈ g−1,−1
R (W,F ) s.t. (W, e−iδ.F ) is a mixed Hodge

structure which splits over R.

In the course to prove Theorem 8.8.1 one shows the existence of a unique

Z ∈ g−1,−1 such that

Jp,q = eZ .Jp,q, Z̄ = −Z

The operation Z obviously preserves the weight filtration. We write Z =

−2iδ. Define another Hodge filtration by setting

F̃ := ei.δ.F

Since δ ∈ g−1,−1
R ⊂ W gl

−2, this element leaves W invariant and acts trivially

on the quotient GrWl . Therefore both F, F̃ induce the same filtrations on

GrWl H. Now it is clear that

e−i.δ.Jp,q = ei.δ.Jp,q

gives a real splitting for H.

This non-trivial fact specifically applies to the mixed Hodge structure of

Hn(X∞) and Ωf . It means that a modification of Hodge filtration of both

MHS provides a real splitting in the Theorem 8.6.1. Another

C̃1 := Ad(e−i.δ).C̃ = Ad(ei.δ).C̃, Ad(g) : X 7→ gXg−1, Ad : G→ Gl(g)
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is a real transformation (notation of theorem 8.6.1).

Proposition 8.8.2. The bigrading Jp,q1 defined by Jp,q1 := e−i.δ.Jp,q is split

over R. The operator C̃1 = Ad(eZ).C̃ : Ωf → Ωf defines a real structure on

Ωf .

This says if Ωf,1 = ⊕p<qJp,q1 then

Ωf = Ωf,1 ⊕ Ωf,1 ⊕
⊕
p

Jp,p1 , Jp,p1 = Jp,p1

The statement of theorem 8.6.1 is valid when the operator C̃ is replaced

with C̃1;

S(Φ−1(ω),Φ−1(η)) = ∗ × resf,0(ω, C̃1.η), 0 6= ∗ ∈ C (8.30)

and this equality is defined over R. The content of the Theorem 8.8.1 is

related to the sl2-orbit theorem, cf. 3.5. The real splitting Iq,p1 = Ip,q1

corresponds to a semisimple transformation Y1.v = (p+q−k).v for v ∈ Ip,q1 .

Then the pair {Y1, N} can be completed to an sl2-triple {N+
1 , Y1, N}. N+

1 is

real and δ, Y1, N
+
1 ∈ gR are infinitesimal isometries of the polarization [CKS]

page 477. This shows that Ωf can be equipped with a MHS that is real split

and is a sum of pure Hodge structures, cf. (3.18).

Ωf =
⊕
k

⊕
p+q=k

Jp,q1

and also an sl2-triple {f+1 , Y ′1 , f} as infinitesimal isometries of the bilinear

form R̂esf,0 which are morphisms of the MHS (F ′1,W ) explained above and

are of types (1, 1), (0, 0), (−1,−1) respectively. The computation of the en-

tries of the matrix δ involves complicated formulas on periods which are out

of this volume.

There is one more word to be mentioned here. That is in the construc-

tion of theorem 8.6.1, although the map C̃ seems to be a linear map between

vector spaces, however it can also be thought of as a bundle map of the cor-
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responding VMHS. In this way it is a C∞-map, because the decomposition

into Deligne-Hodge sub-bundles is in general C∞. In proposition 8.8.2 it is

this bundle map that considered.

Example 8.8.3. [GGK1] We provide an example of real splitting by the

orbit of a nilpotent transformation. Consider HQ = ⊕4
0 Qei, where,

e0 =


0

0

0

1

 , e1 =


0

0

1

0

 , e2 =


0

1

0

0

 , e3 =


1

0

0

0


with the bilinear form

Q =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0


and the nilpotent operator

N =


0 0 0 0

1 0 0 0

0 1 0 0

0 0 −1 0

 , F p = {e3, ..., ep}(3 ≥ p ≥ 0)

Then N and F p, define a nilpotent orbit where the limit mixed Hodge

structure (F̂ ,W (N)) is R-split. The sl2-triple associated to this orbit is

H =


3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

 , N+ =


0 3 0 0

0 0 4 0

0 0 0 −3

0 0 0 0


Let
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X =


−3 3i 0 0

i −1 4i 0

0 i 1 −3i

0 0 −i 3

 , X3 6= 0, X4 = 0

Then, define:

u3 :=

√
3

2
exp(iN)e3 =

√
3

2


6

6i

−3

i



X.u3 =

√
3

4


−6

−6i

−3

i

 , X2.u3 =

√
3

2


6

−2i

1

i

 , X3.u3 =

√
3

2


−6

6i

3

i



Thus, if u2 :=

√
3

2
X.u3, then

{u3, u2, ū3, ū2}

defines the desired real splitting.
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Applications

In this chapter, we give several applications of the Theorems 8.6.1 and 8.7.1

to other problems relevant to Hodge theory.

9.1 Hodge index for Grothendieck residue

Hodge theory assigns to any polarized Hodge structure (H,F, S) a signa-

ture which is the signature of the hermitian form S(C•, •̄), where C is

the Weil operator, cf. 2.2.8. In case of a polarized mixed Hodge struc-

ture (H,F,W (N), S), where N is a nilpotent operator this signature is de-

fined to be the sum of the signatures of the hermitian forms associated to

the graded polarizations Sl : PGrWl H × PGrWl H → C, i.e signatures of

hl := Sl(Cl•, N l•̄) for all l. A basic example of this is the signature associ-

ated to mixed Hodge structure on the total cohomology of a compact Kahler

manifold, namely Hodge index theorem. In this case the MHS is polarized

by

S(u, v) = (−1)m(m−1)/2

∫
X
u ∧ v ∧ ωn−m, u, v ∈ Hm.

where ω is the Kahler class. The signature associated to the polarization S

is calculated by W. Hodge in this case.

Theorem 9.1.1. (W. Hodge) The signature associated to the polarized

mixed Hodge structure of an even dimensional compact Kahler manifold is∑
p,q(−1)qhp,q, where the sum runs over all the Hodge numbers, hp,q. This

signature is 0 when the dimension is odd.

Similar definitions can be applied to polarized variation of mixed Hodge

structure, according to the invariance of Hodge numbers in a variation of
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MHS. In the special case of isolated hypersurface sigularities, the polariza-

tion form is given by S6=1 ⊕ S1 where

S 6=1(a, b) = SY (i∗a, i∗b), a, b ∈ Hn(X∞)6=1

S1(a, b) = SY (i∗a, i∗NY b), a, b ∈ Hn(X∞)1

A repeated application of theorem 9.1.1 to the situation of 5.2 gives the

following,

Theorem 9.1.2. [JS5] The signature associated to the polarized variation

of mixed Hodge structure of an isolated hypersurface singularity with even

dimensional fibers is given by

σ =
∑

p+q=n+2

(−1)qhpq1 + 2
∑

p+q≥n+3

(−1)qhpq1 +
∑

(−1)qhpq6=1 (9.1)

where h1 = dimHn(X∞)1, h6=1 = dimHn(X∞)6=1 are the corresponding

Hodge numbers. This signature is 0 when the fibers have odd dimensions.

Let f : (Cn+1, 0) → (C, 0) be a germ of analytic function having an

isolated singularity at the origin. Consider

Af =
C[[x0, ..., xn]]

(∂0f, ..., ∂nf)
.

By Jacobson-Morosov theorem in 2.3.6 or 3.1.2, there exists a unique in-

creasing filtration Wl on Af (or A) such that

×f̄ : GrWl A→ GrWl−2A, ×f̄ l : GrWl A
∼= GrW−lA

Define the primitive components Pl = PGrWl Af := ker f̄ l+1 : GrWl A →
GrW−lA. Then, we obtain a set of non-degenerate forms

Qm : PGrWm A× PGrWm A→ C

The mixed Hodge structure defined on Ωf . We defined a MHS on Ωf in 8.5

and saw in sections 8.6 and 8.7 that it is polarized by the form R̂esf in a

way that the map Φ is an isomorphism of polarizations.
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Theorem 9.1.3. The signature associated to the modified Grothendieck

pairing R̂esf,0 associated to an isolated hypersurface singularity germ f ; is

equal to the signature of the polarization form associated to the MHS of the

vanishing cohomology, given by (9.1).

Proof: Trivial by Theorems 8.6.1, 8.7.1.

9.2 Asymptotic Hodge theory and Geometry of

Deligne Decomposition

The concept of opposite filtrations plays an important role in the study of

asymptotic behaviour of a VMHS and Mirror symmetry. In this section we

compare the theorems 8.6.1 and 8.7.1 with some results in asymptotic Hodge

theory due to G. Pearlstein and J. Fernandez, [P2] developing some works

of P. Deligne, [D2]. We begin by the following definition;

Definition 9.2.1. A pure, polarized C-Hodge structure of weight k over S

consists of, a local system of finite dimensional C-vector spaces VC over S

equipped with a decreasing Hodge filtration F of V = VC ⊗OS by holomor-

phic sub-bundles, and a flat (−1)k-symmetric bilinear form Q : V× V→ C
such that

• F and F̄ are opposite filtrations.

• F is horizontal, i.e. ∇(F) ⊂ F ⊗ Ω1
S

• Q polarizes each fiber of V.

A variation of graded polarized C-mixed Hodge structure is defined analo-

gously having horizontality for F , and a collection of (GrWk ,FGr
W
k , Qk) of

pure polarized C-Hodge structures.
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Theorem 9.2.2. (P. Deligne) Let V→4∗n be a variation of pure polarized

Hodge structure of weight k, for which the associated limiting mixed Hodge

structure is Hodge-Tate. Then the Hodge filtration F pairs with the shifted

monodromy weight filtration W[−k], of V, to define a Hodge-Tate variation

over a neighborhood of 0 in 4∗n.

Theorem 9.2.3. ([P2] Theorem 3.28) Let V be a variation of mixed Hodge

structure, and

V =
⊕
p,q

Ip,q

denotes the C∞-decomposition of V to the sum of C∞-subbundles, defined

by point-wise application of Deligne theorem. Then the Hodge filtration F of

V pairs with the increasing filtration

Ūq =
∑
k

F̄k−q ∩Wk (9.2)

to define an un-polarized CV HS.

Remark 9.2.4. Given a pair of increasing filtrations A and B of a vector

space V one can define the convolution A ∗B to be the increasing filtration

A ∗B =
∑
r+s=q

Ar ∩Bs. (9.3)

In particular for any F setting F∨r = F−r, then the increasing filtration Ū

is given by the formula

Ū = F∨ ∗W (9.4)

Theorem 9.2.5. (G. Pearlstein-J. Fernandez)[P2] Let V be an admissible

variation of graded polarized mixed Hodge structures with quasi-unipotent

monodromy, and V = ⊕Ip,q the decomposition relative to the limiting mixed

Hodge structure. Define

U ′p =
⊕
a≤p

Ip,q (9.5)

and g− = {α ∈ gC|α(U ′p) ⊂ U ′p−1}, then;
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(a) U ′ is opposite to F∞. Moreover, relative to the decomposition

g =
⊕
r,s

gr,s (9.6)

(b) If ψ(s) : 4∗n → Ď is the associated untwisted period map, then in

a neighborhood of the origin it admits a unique representation of the

form

ψ(s) = eΓ(s).F∞ (9.7)

where Γ(s) is a g−-valued function.

(c) U ′ is independent of the coordinate chosen for F∞. Moreover,

U ′ = F∨nilp ∗W = F∨∞ ∗W. (9.8)

Here above Fnilp is an arbitrary element in the nilpotent orbit of the limit

Hodge filtration corresponded to the nilpotent cone (i.e. positive linear

combination) of the logarithms of the generators of the monodromy group,

i.e Fnilp = exp(z1N1 + ... + zrNr)F∞ where Nk are logarithms of different

local monodromies, cf. [P2].

Theorem 9.2.6. Let V be an admissible variation of polarized mixed Hodge

structure associated to a holomorphic germ of an isolated hyper-surface sin-

gularity. Set

U ′ = F∨∞ ∗W. (9.9)

Then U ′ extends to a filtration U ′ of V by flat sub-bundles, which pairs with

the limit Hodge filtration F of V, to define a polarized C-variation of Hodge

structure, on a neighborhood of the origin.

Proof. The first part of the theorem that the two filtrations F∞ and U ′ pair

opposite together in a neighborhood of 0 was shown in sec. 8.5, see also

Theorem 9.2.3. The way that it is polarized is the content of Theorems

8.6.1, 8.7.1 and 8.7.4.
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Remark 9.2.7. [P2] Associated to a MHS (F,W ) the inclusion⊕
s≤q

Ir,s ⊂
⊕
k

Wk ∩ F k−q =
⊕
s≤q

Īr,s (9.10)

is easily verified. For VMHS, V, the Griffiths transversality for F induces a

similar one for the increasing filtration U•;

∇Uq ⊂ Ω1 ⊗ Uq+1. (9.11)

To the C∞-vector bundle

E =
⊕
p

Vp, Vp =
⊕
q

Ip,q (9.12)

F, Ū are the two filtrations associated. Then Griffiths transversality is equiv-

alent to saying that the decomposition defines a complex variation of Hodge

structure.

The polarization of a complex variation of Hodge structure will probably

be interpreted to mean a parallel hermitian form which makes the system of

Hodge bundles Vp orthogonal, and becomes positive definite on multiplying

the form by (−1)p on Vp. Suppose that in the situation of Theorem 8.6

there is any such hermitian form R. Then, on the one hand since R and U ′

are flat, so is the orthogonal complement of U ′p−1 in U ′p. On the other hand,

the way things have been setup, the orthogonal complement of U ′p−1 in U ′p

is exactly

Vp = U ′p ∩ F p (9.13)

But this is the system of Hodge bundles, and so the Hodge filtration is also

flat. The above discussion also proves the following,

Corollary 9.2.8. The mixed Hodge structure on the extended fiber Ωf de-

fined in 8.5, can be identified with

Φ(U ′ = F∨∞ ∗W )
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where Φ is as in 8.5.

9.3 Family of curve Jacobians

Let V be a complex vector space and Λ a discrete lattice of maximal rank.

Let Π = (πij) be the 2n× n matrix such that

dxi =
∑
α

πiαdzα + π̄iαdz̄α

(Π, Π̄) is the matrix of the change of basis from {dzα, dz̄α}. A necessary and

sufficient condition for the complex torus M = V/Λ to be an abelian variety

is given by the well-known Riemann conditions. M is an abelian variety iff

there exists an integral skew symmetric matrix Q such that

tΠ.QΠ = 0

and

−
√
−1

t
Π.QΠ̄ > 0

In terms of the matrix Π̃ = (Π, Π̄)

−
√
−1

t
Π.QΠ̄ =

(
H 0

0 −tH

)
where H > 0. These conditions can also be written in terms of the inverse

matrix Ω̃ =

(
Ω

Ω̄

)
similarly. There exists a basis for Λ such that the matrix

of Q in this basis is of the form

Q =

(
0 ∆δ

−∆δ 0

)
, ∆δ =


δ1 0

. . .

0 δn

 , δi ∈ Z

One can modify this process more to choose a complex basis e1, ..., en such

that Ω = (δδ, Z) with Z symmetric and ImZ > 0, [G3].
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Theorem 9.3.1. [G3] M = V/Λ is an abelian variety iff there exists an

integral basis for Λ and a complex basis for V such that,

Ω = (∆δ, Z)

with Z symmetric and ImZ > 0.

Then the form

ω =
n∑
i=0

δi dxi ∧ dxn+i

namely the (invariant harmonic) Hodge form is non-degenerate and (some

power of that) provides an embedding of M in projective space. The form

ω is also called a polarization of M , and δi’s are called elementary divisors

of ω. When δα = 1 the abelian variety is called principally polarized.

The basic example of a principally polarized abelian variety is the Jaco-

bian variety of a complex Riemann surface S of genus g. It is given by the

choice of a basis δ1, ..., δ2g for H1(S,Z) and a basis ω1, ..., ωg for H0(S,Ω1),

we have

I(S) =
Cg

Z{λ1, ..., λ2g}

where λi are the columns of the matrix

λi =t
(∫
δi

ω1, ...,

∫
δg

ωg
)

We may choose the bases such that∫
λi

ωα = δiα, 1 ≤ i, α ≤ g

Then the period matrix is of the form

Ω = (I, Z)

Thus I(S) is an abelian variety principally polarized given in terms of the
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basis {dxi} for H1(I(S),Z) dual to the basis {λi} ∈ H1(I(S),Z), by

ω =
∑

dxα ∧ dxn+α

Geometrically I(S) = H0(S,Ω1)∨/H1(S,Z), whereH1(S,Z) is embedded

in H0(S,Ω1)∨ by integration. Then the polarization form ω ∈ H2(I(S),Z) =

HomZ(
∧2H1(S,Z),Z) is the skew symmetric bilinear form

H1(S,Z)⊗H1(S,Z)→ Z

given by intersection of cycles, [G3]. Thus we have shown the following

important fact;

Theorem 9.3.2. ([G3] page 307) Let C be a smooth projective curve over

the field C, and J(C) its Jacobian. Then, the Poincarè duality of H1(C,C)

is identified with the polarization of J(C), given by the Θ-divisor.

This theorem simply says that the cup product of H1 defines a well-

defined bilinear map on Jacobian of the curve. We want to consider this

situation in a family parametrized by a 1-dimensional variety S. Suppose

that

J1(H1
s ) = H1

s,Z \H1
s,C/F

0H1
s,C

J(H) =
⋃
s∈S∗

J1(Hs)

is the family of Jacobians associated to the variation of Hodge structure in

a projective degenerate family of algebraic curves (here we have assumed

the Hodge structures have weight -1), and dim(S) = 1. Then the fibers of

this model are principally polarized abelian varieties. The polarization of

each fiber is given by the Poincarè product of the middle cohomology of the

curves, via a holomorphic family of Θ-divisors. We are going to apply the

construction in 8.4 and 8.5 to the variation of Jacobians. To extend J(H) to

a space over S, we let G be the Gauss-Manin system on S∗, obtained from
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the variation H as in Chap. 6. On S∗ we have an extension of integral local

classes

0→ Hs → Js → Zs → 0

On the Gauss-Manin systems we get

0→M → N → QH
S∗ [n]→ 0

with QH
S [n] is the trivial module with sheaf of sections OS∗ .

Remark 9.3.3. A holomorphic section of J̄ is called quasi-horizontal if it

has a lift to a horizontal section of G. In our case this condition is not

necessary, but it is crucial in higher dimensions.

Similar to the sections 8.4 and 8.5, the first and the last objects in the short

exact sequences extend to the punctures in a way that the extended fiber

is polarized by modified Grothendieck pairing. The extended fiber of the

Jacobian bundle is the Jacobian of the opposite Hodge filtration. In this way

the extended fiber is an abelian variety and principally polarized, with some

Θ-divisor. Note that we do not obtain any curve on the puncture whose

Jacobian gives the fiber. The extended Jacobian simply is

X0 = J1(Ωf ) = Ωf,Z \ Ωf/F
0Ωf

Theorem 9.3.4. The extension of a degenerate 1-parameter holomorphic

family of Θ-divisors polarizing the Jacobian of curves in a projective fi-

bration, is a Θ-divisor polarizing the extended Jacobian, i.e the Jacobian

associated to the pure Hodge structure in the extension.

The above theorem should be understood as follows. At the level of local

systems (Hodge structures) we have the diagram of flat pairings,
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κ : H ⊗ H → C
↓ ↓

κJ : J ⊗ J → C
↓ ↓

× : Q ⊗ Q → C

(9.14)

The extension of the first and the last provides an extension of the middle

line. Similar non-degenerate bilinear forms can be defined on the Gauss-

Manin modules, where the above diagram is its reduction on fibers;

K : G ⊗ G → C[t, t−1]

↓ ↓
KJ : N ⊗ N → C[t, t−1]

↓ ↓
× : QH

S ⊗ QH
S → C[t, t−1]

(9.15)

where the map in the first line is the K. Saito higher residue pairing.

9.4 Modules over Hypersurface rings

A hyper-surface ring is a ring of the formR := P/(f), where P is an arbitrary

ring and f a non-zero divisor. Localizing we may assume P is a local ring of

dimension n+1. As according to the title we assume P = C{x0, ..., xn} and f

a holomorphic germ, or P = C[x0, ..., xn] and then f would be a polynomial.

Then we are mainly interested to study finitely generated modules over these

rings. Consider f : Cn+1 → C in this form, and choose a representative for

the Milnor fibration as f : X → T , where T is the disc around 0.

Then, through all the rest of this section we assume 0 ∈ Cn+1 is the only

singularity of f .

A matrix factorization of f in P is a pair of matrices A and B such that

AB = BA = f. id. It is equivalent to the data of a pair of finitely generated

free P -modules
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d0 : X0 � X1 : d1, d0d1 = d1d0 = f. id

It is a basic fact, discovered by D. Eisenbud, that the R-modules have a

minimal resolution that is eventually 2-periodic. Specifically, In a free res-

olution of such a module M , we see that after n-steps we have an exact

sequence of the following form.

0→M ′ → Fn−1 → Fn−2 → ...→ F0 →M → 0 (9.16)

where the Fi are free R-modules of finite rank and depthR(M ′) = n. If

M ′ = 0 then M has a free resolution of finite length., If M ′ 6= 0, then M ′

is a maximal Cohen-Macaulay module, that is depthR(M ′) = n. So ”up to

free modules” any R-module can be replaced by a maximal Cohen-Macaulay

module. If M is a maximal Cohen-Macaulay R-module that is minimally

generated by p elements, its resolution as P -module has the form

0 → P p
A→ P p → M → 0

↓
B
↙ ↓ ↓ 0

0 → P p
A→ P p → M → 0

where A is some p×p matrix with det(A) = f q. The fact that multiplication

by f acts as 0 on M produces a matrix B such that A.B = B.A = f.I, where

I is the identity matrix. In other words we find a matrix factorization (A,B)

of f determined uniquely up to base change in the free module P p, by M .

This matrix factorization not only determines M but also a resolution of M

as R-module.

....→ Rp → Rp → Rp →M → 0

So a minimal resolution of M looks in general as follows

...→ G→ F → G→ Fn−1 → ...→ F0 →M → 0

As a consequence all the homological invariants like TorRk (M,N), ExtkR(M,n)

are 2-priodic, [BVS], [EP].
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The category of matrix factorizations of f over R, namely MF (R, f); is

defined to be the differential Z/2-graded category, whose objects are pairs

(X, d), where X = X0 ⊕ X1 is a free Z/2-graded R-module of finite rank

equipped with an R-linear map d of odd degree satisfying d2 = f. idX . Here

the degree is calculated in Z/2. Regarding to the first definition

d =

(
0 d0

d1 0

)
, d2 = f. id

The morphisms MF (X,X ′) are given by Z/2-graded R-module maps from

X to X ′ (or equivalent between the components X0 and X1) provided that

the differential is given by

d(f) = dX′ ◦ f − (−1)|f |f ◦ dX . (9.17)

Here dX or d′X may be considered as the matrix given above or to be sep-

arately d0 and d1, and also it is evident that d(f)2 = 0. By choosing bases

for X0 and X1 we reach to the former definition, [EP].

M. Hochster in his study of direct summand conjecture defined the fol-

lowing invariant namely Θ-invariant.

Definition 9.4.1. (Hochster Theta pairing) The theta pairing of two R-

modules M and N over a hyper-surface ring R/(f) is

Θ(M,N) := l(TorR2k(M,N))− l(TorR2k+1(M,N)), k >> 0

This definition makes sense as soon as the length appearing are finite. This

certainly happens if R has an isolated singular point.

Example 9.4.2. [BVS] Take f = xy − z2,M = C[[xyz]]/(x, y). A matrix

factorization (A,B) associated to M is given by

A =

(
y −z
−z x

)
, B =

(
x z

z y

)

And TorRk (M,M) is the homology of the complex
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.....→ C[[y]]2 → C[[y]]2 → C[[y]]→ 0

where

α =

(
y 0

0 0

)
, β =

(
0 0

0 y

)

So we find that Θ(M,M) = 0.

Hochster theta pairing is additive on short exact sequences in each ar-

gument, and thus determines a Z-valued pairing on G(R), the Grothendieck

group of finitely generated R-modules. One loses no information by tensor-

ing with Q and so often theta is interpreted as a symmetric bilinear form

on the rational vector space G(R)Q. It is basic that Theta would vanish

if either M or N be Artinian or have finite projective dimension [MPSW],

[BVS]. The Θ-invariant has different interpretations as intersection multi-

plicity in the singular category.

Theorem 9.4.3. [BVS] When M = OY = R/I,N = OZ = R/J , where

Y,Z ⊆ X0 are the sub-varieties defined by the ideals I, J respectively, then

Θ(OY ,OZ) = i(0;Y, Z)

in case that Y ∩Z = 0. Here i(0; , ) is the ordinary intersection multiplicity

in Cn+1.

By additivity over short exact sequences and the fact that any module admits

a finite filtration with sub-quotients of the form R/I, knowing Θ(OY ,OZ)

determines Θ(M,N) for all modules M,N .

Theorem 9.4.4. [BVS] Assume f ∈ C[[x1, ..., x2m+2] is a homogeneous

polynomial of degree d, and X0 = f−1(0) ∈ C2m+2 and T = V (f) ∈ P2m+1

the associated projective cone of degree d. Let Y and Z be also co-dimension

m cycles in T . If Y,Z intersect transversely, then

Θ(OY ,OZ) = −1
d [[Y ]].[[Z]]
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Where [[Y ]] := d[Y ] − deg(Y ).hm is the primitive class of [Y ], with h ∈
H1(T ) the hyperplane class.

The primitive class of a cycle Y is the projection of its fundamental class

[Y ] ∈ Hm(T ) into the orthogonal complement to hm with respect to the

intersection pairing into H2m(T ) = C. As hm.hm = d = deg(T ) and

[Y ].hm = deg(Y ) the description of the primitive class follows. Substituting

the claim can be reformulated

Θ(OY ,OZ) = −1
d [[Y ]].[[Z]] = −d[Y ].[Z] + deg(Y )deg(Z)

Where [Y ].[Z] denotes the intersection form on the cohomology of the pro-

jective space, [BVS].

When f in consideration is a homogeneous polynomial of degree d, such

that X := Proj(R) is a smooth k-variety, the Theta pairing is induced, via

chern character map, from the pairing on the primitive part of de Rham

cohomology

H(n−1)/2(X,C)

C.γ(n−1)/2
× H(n−1)/2(X,C)

C.γ(n−1)/2
→ C

given by

(a, b)→ (
∫
X a ∪ γ

(n−1)/2)(
∫
X a ∪ γ

(n−1)/2)− d(
∫
X a ∪ b)

where γ is the class of a hyperplane section and theta would vanish for

rings of this type having even dimensions. When n = 1 by γ0 we mean

1 ∈ H0(X,C), [MPSW].

Theorem 9.4.5. [MPSW] For R and X as above, if n is odd there is a

commutative diagram

G(R)⊗2
Q ←−−−− (

K(X)Q
α

)⊗2

Θ

y y(chn−1/2)⊗2

C ←−−−−
θ

(
H(n−1)/2(X,C)

C.γ(n−1)/2
)⊗2

(9.18)
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Theorem 9.4.6. [MPSW] For R and X as above and n odd the restriction

of the pairing (−1)(n+1)/2Θ to

im(ch
n−1
2 ) : K(X)Q/α→

H(n−1)/2(X,C)

C.γ
n−1
2

is positive definite. i.e. (−1)(n+1)/2Θ(v, v) ≥ 0 with equality holding if and

only if v = 0. In this way θ is semi-definite on G(R).

Proof. [MPSW] Define

W = Hn−1(X(C),Q) ∩H
n−1
2
,n−1

2 (X(C))

It is classical that the image of ch(n−1)/2 is contained in W . Define e :

W/Q.γ(n−1)/2 ↪→ Hn−1(X,Q) by

e(a) = a−
∫
X a ∪ γ

(n−1)/2

d
.γ(n−1)/2 ∈W

We know that θ(a, b) = −d.Icoh(e(a), e(b)) Now the theorem follows from the

polarization properties of cup product on cohomology of projective varieties.

The Hochschild chain complex of MF (R, f) is quasi-isomorphic to the

Koszul complex of the regular sequence ∂0f, ..., ∂nf . In particular the Hochschild

homology (and also the Hochschild cohomology) of 2-periodic dg-category

MF (R, f) is isomorphic to the module of relative differentials or the Jacobi

ring of f , [D].

Theorem 9.4.7. (T. Dykerhoff) [D], [PV] The canonical bilinear form on

the Hochschild homology of category of matrix factorizations C = MF (P, f)

of f , after the identification

HH∗MF (P, f) ∼= Af ⊗ dx[n] (9.19)

coincides with

〈g ⊗ dx, h⊗ dx〉 = (−1)n(n−1)/2resf,0(g, h) (9.20)
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The chern character or Denis trace map is a ring homomorphism

ch : K0(X)→ HH0(X) ∼= Ωf (9.21)

where K ′ is free abelian group on the isomorphism classes of finitely gen-

erated modules modulo relations obtained from short exact sequences. The

construction of chern character map or chern classes is functorial w.r.t flat

pull back. In the special case of i : X ↪→ Y the compactification, the

following diagram commutes,

K ′0(Y0)
chY−−−−→ HH0(Y0) ∼= ΩY

f

Φ−1
Y−−−−→ Hn(Y∞)

i∗
y yi∗ yi∗

K ′0(X0) −−−−→
chX

HH0(X0) ∼= ΩX
f −−−−→

Φ−1
X

Hn(X∞).

(9.22)

Given a matrix factorization (A,B) for a maximal Cohen-Macaulay M , one

can find de Rham representatives for the chern classes. Consider C[[x0, ..., xn]]

as a C[[t]]-module with t acting as multiplication by f . Denote by Ωp the

module of germs of p-forms on Cn+1, and let Ωp
f = Ωp/(df ∧ Ωp−1). One

puts ω(M) = dA ∧ dB. The components of the chern character

chM := tr(exp(ω(M))) =
∑
i

1

i!
ωi(M) (9.23)

are well-defined classes

ωi(M) = tr((dA ∧ dB)i) ∈ Ω2i
f /(df ∧ Ω2i−1) (9.24)

There are also odd degree classes

ηi(M) := tr(AdB(dA ∧ dB)i) ∈ Ω2i+1
f /Ω2i

f

The group Ω2i+1
f /dΩ2i

f can be identified with the cyclic homologyHCi(P/C{t}).
They fit into the following short exact sequence such that dηi−1 = ωi(M).

0→ Ω2i−1
f /Ω2i−2

f → Ω2i/(df ∧ Ω2i−1)→ Ω2i/Ω2i−1 → 0
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If the number of variables n + 1 is even, then a top degree form sits in the

Brieskorn module

H
(0)
f = Ωn/(df ∧ dΩn−1)

a free C[[t]]-module of rank µ. The higher residue pairing

K : H
(0)
f ×H

(0)
f → C[t, t−1]

of K. Saito can be seen as the de Rham realization of the Seifert form of the

singularity, [BVS]. The following theorem is conjectured in [MPSW].

Theorem 9.4.8. Let S be an isolated hypersurface singularity of dimension

n over C. If n is odd, then (−1)(n+1)/2Θ is positive semi-definite on G(R)Q,

i.e (−1)(n+1)/2Θ(M,M) ≥ 0.

Proof. By additivity of Θ on each variable, we may replaceM,N by maximal

Cohen-Macaulay modules. According to this, determination of the sign of

Θ amounts to understanding how the image of chern classes look like in the

MHS of Ωf . By theorem 3.2 it amounts to the same things for the image in

Hn(X∞) under the isomorphism Φ. The following diagram is commutative

by the functorial properties of chern character.

K ′0(Y0)
Φ−1
Y ◦chY−−−−−−→ Hn(Y∞)

i∗
y yi∗

K ′0(X0) −−−−−−→
Φ−1
X ◦chX

Hn(X∞).

(9.25)

We are assuming that i∗ is surjective. By what was said, the chern class

we are concerned with, is a Hodge cycle. The commutativity of the above

diagram allows us to replace the pre-image of the chern character for X,

with similar cycle upstairs. Because the polarization form SX was defined

via that of SY . Thus, if

Hn(Y∞) = ⊕p+q=nHp,q
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be the Hodge decomposition, the only non trivial contribution in the cup

product will be for the Hn/2,n/2, and the polarization form is evidently

definite on this subspace (Hodge cycles). Note that here the corresponding

chern class should lie in Hn
6=1. Because the map NY is of type (−1,−1) for the

Hodge structure ofHn(Y∞) and the polarization SY (Hn/2,n/2, Hn/2−1,n/2−1) =

0 for obvious reasons. In this way one only needs to prove the positivity

statement for Hochster Θ when the chern character is in HY, 6=1, and this is

the content of Theorem 2.8.

9.5 Fourier-Laplace Transform of Polarization

The extensions of PVMHS can be explained by described by Fourier-Laplace

transform of sheaves. For the set up, let G be the Gauss-Manin system

associated to the VMHS (H, F,W ) as before. we consider G(∗∞) = G ⊗
DP1(∗∞) and define its Fourier-Laplace transform by

Ĝ := q+(p+G(∗∞))⊗ E−tτ ), E−tτ = (OP1×C,∇ = d− τdt− tdτ)

Here p : P1 × C → P1 and q : P1 × C → C are projections and upper

(resp. lower) + denote the pull back (resp. pushforward) in the category of

D-modules. By a D module over a complex manifold X we mean an OX

module (i.e. sheaf of OX -module as in algebraic geometry) together with

an action of flat connection ∇ on that. This is equivalent to define a DX -

module as a sheaf on T ∗X the co-tangent bundle of X. The Fourier-Laplace

transform of G can also be defined as, (cf. [SA7])

Ĝ = coker(C[τ ]⊗ G
∇t−τdt−→ C[τ ]⊗ G), τ.m := ∂t.m

If we have a polarization as

K : H′ ⊗O H→ LR−an

where LR−an is the set of elements (distributions) of the form, (cf. [SA4])
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∑
α,p

C{t}[t−1]C{t̄}[t̄−1](log |t|)p

The above bilinear form carries over

K̂ : Ĥ′ ⊗O ı
+Ĥ→ LR−an,

(Here ı : P1 = C ∩ ∞ → P1 is z 7→ −z and ı+ is necessary for we use

exp(tτ) not exp(−tτ) ) In a way that the distribution on the integral is

twisted by exp(−tτ). exp(tτ). The product after Fourier transform is

(
∑

τ imi)dt⊗ (
∑

τ ini)dt 7→ [ψ →
∑
i,j

k(mi, nj)τ
iτ̄ je−tτ .etτψdt ∧ dt̄]

up to a complex constant, [SA7].

Example 9.5.1. [SA7]

• G = C[t]〈∂t〉/(t− c) =⇒ K(m, m̄) = δc, K̂(m, m̄) = i/2π exp(cτ − cτ)

• G = C[t]〈∂t〉/(t∂t−α)⇒ K(m, m̄) = |t|2α, K̂(m, m̄) = Γ(α+1)/Γ(−α)|τ |−2(α+1)

Theorem 9.5.2. [SA4], [SA7] Assume (G, F,W,H, S) be a polarized MHM

(hence regular holonomic) with quasi-unipotent underlying variation of mixed

Hodge structure K, defined on a Zariski dense open subset U of an algebraic

manifold X. Then, G has a smooth extension to all of X Given by the

Fourier-Laplace transform of G, and similar for the perverse sheaf H. The

extended MHM (resp. perverse solution) is also polarized. The polariza-

tions on the fibers can be described by the Fourier-Laplace transform of the

polarization of G and H.

Theorem 9.5.3. ([DW], page 53, 54, prop. 2.6 - [SA7] sec. 5) Assume

H′ = Rnf∗CX′ be the local system associated to a holomorphic isolated sin-

gularity f . Consider the map

F : Ωn+1
X → i∗

⋃
z

Hom(Hn(X, f−1(η.
z

|z|
),Z) ∼= ⊕iZΓi,C)
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ω 7→ [z → (Γi →
∫

Γ̃i

e−t/zω)],

and define

H := Im(F )

where Γi are the classes of Lefschetz thimbles, and Γ̃i is the extension to in-

finity. Then the vector bundle H is exactly the Fourier-Laplace transform of

the cohomology bundle Rnf∗CX′ = ∪tHn(Xt,C), equipped with a connection

with poles of order at most two at ∞.

(H′,∇′) � (H,∇)

Compairing this with Theorem 8.6.1 , 8.7.1 and 3.4.1 we obtain the following

important corollary.

Corollary 9.5.4. In case of the PVMHS associated to the Milnor fibration

of an isolated hypersurface singularity f , the modified Grothendieck residue

R̂esf,0 = resf,0(•, Ĉ•)

where Ĉ is defined relative to the Deligne-Hodge decomposition of Ωf as

before, is the Fourier-Laplace transform of the polarization S on Hn(X∞,C),

that is

R̂es = ∗. FS, ∗ 6= 0

Proof. The corollary follows from 8.7.5, 9.5.2, 9.5.3 and the uniqueness of

the polarization form of mixed Hodge structure, namely mixed Hodge metric

theorem, 3.4.1.

Remark 9.5.5. Another important fact is that, a polarization of the form

K : H′ ⊗O H→ C[t, t−1]

induces an isomorphism
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H′∨ ∼=O H

We can glue the above bundles by this isomorphism obtained from the polar-

ization. Thus, the process of gluing is equivalent to polarization. Therefore,

in the situation of 8.4 and 8.5, we have

H(0)∨ ∼= G, ⇒ Ω∨f
∼= Hn(X∞,C)

as PVMHS, and PMHS respectively. The corresponding connections are

given by

∇′ : H′ → 1

z
Ω1 ⊗H′, ∇ : H→ zΩ1 ⊗H

respectively, [DW] exp. 1, C. Sabbah, pages 12, 13.
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Further Studies

10.1 Primitive elements

In this section we explain primitive elements as basis for primitive subspaces

of vanishing cohomology, and try to explain the conjugation map on van-

ishing cohomology of an isolated hypersurface singularity, via elementary

sections.

Assume G the associated Gauss-Manin system of the isolated singularity

f : Cn+1 → C and φ1, ..., φµ, a frame basis for G and (α, sα) is the spectral

pairs of f . According to [SA2] it is possible to choose the basis in a way

that we have the following recursive relations;

φs(i)+k = ∂−kt
∏
α

(t∂t − α)jφs(i), 1 ≤ i ≤ r, 1 ≤ k ≤ ki. (10.1)

for specific numbers 0 ≤ s(1), ..., s(r) ≤ µ. In this way we reach a set of

forms φs(i) indexed by spectral numbers which produce other basis elements

by applying the operators t∂t−α successively. They also describe GrWl Gr
V
α G

concretely. These forms are called primitive elements relative to the nilpo-

tent operator induced by t∂t − α on Cα. They provide information about

the Jordan blocks structure in G. If we denote the Jordan block as

Bk := 〈N j [ωk0 ] | j = 0, ..., νk〉,

then it holds that;

Bα,l =

B1−α,νk−l, α ∈]0, 1[

B0,νk−l, α = 0
(10.2)

156



Chapter 10. Further Studies

See [SA2] for the proof.

Proposition 10.1.1. [SA5], [SA2] There is a 1-1 correspondence between

opposite filtrations on Hn(X∞)C and free, rank µ, C[t]-submodules G∞ on

which the connection is logarithmic where G0,G∞ define a trivial vector bun-

dle on P1.

The submodule G∞ in Proposition 10.1.1 is given by;

G∞ = C[t]〈[ω0], ..., ∂−s0t [ω0], ..., ∂−srt [ωr]〉.

The primitive elements provide the good bases of the Brieskorn mod-

ule. They also prove the existence of a solution to The Poincarè-Birkhoff

problem. In such a basis the matrix of the operator t has the form;

t = A0 +A1∂
−1
t (10.3)

where A0, A1 are square matrices of size µ and A1 is a diagonal matrix. It

holds (cf. [SA5], [H1]) that, in such a basis the K. Saito higher residue form

[S1] takes the form

Kf (ηi, ηj) = ±δκ(i)j .∂
−n−1
t , (10.4)

where δ is the Kronecker delta and κ is an involution of the set {1, ..., µ} as in-

dex set of a specific basis of G namely {ηi}µi=1. The extension of an PVMHS’s

may be explained by the solvability of the Poincarè-Birkhoff problem associ-

ated to the Gauss-Manin systems. One step in solving the Poincarè-Birkhoff

problem for the Gauss-Manin system of f is to glue different lattices in the

Gauss-Manin vector bundle to obtain a vector bundles over CP (1).

Example 10.1.2. The equation (10.2) completely explains how to do con-

jugation on the elementary sections of the Deligne extension. Specifically

ψ−1
α (tα(log t)lAα,l) =

ψ−1
1−α(t1−α(log t)ν−lĀ1−α,ν−l), α ∈]0, 1[

ψ−1
0 ((log t)lĀ0,ν−l), α = 0
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where ν is the size of the corresponding Jordan block. Regarding the map

Φ defined in 8.5, the conjugation on Ωf must should satisfy similar re-

lations. That is the conjugate of an element in GrαVGr
W
l Ωf is either in

Gr1−α
V GrWν−lΩf or Gr0

VGr
W
ν−lΩf , in respective cases, such that the corre-

sponding sections of vanishing cohomology satisfy the above.

10.2 Higher residues

K. Saito [S1], [S2] introduced the concept of higher residue pairingsK
(k)
F , k =

0, 1, 2, ... which are defined on the relative de Rham cohomology module H
(k)
F

of the family F and take values in the ring OT of holomorphic functions on

the parameter space. The introductory material in this section are taken

from [S1].

For a holomorphic isolated singularity germ over the disc take a represen-

tative of the Milnor fibration f : X → T . In the following we have re-

placed the germ f by a universal unfolding of it. A universal unfolding of f

parametrized by S is by definition, a map F : Z ⊂ X × S → C such that

F (0) = f . We briefly review the machinery which K. Saito.

Let

Ωf := Ωn+1
X/T /df ∧ Ωn

X/T .

Definition 10.2.1. (E. Brieskorn) [B], [S1]

H(0) = H
(0)
f := f∗(Ω

n+1
X/T /df ∧ dΩn−1

X/T )

H(−1) = H
(−1)
f := f∗(Ω

n
X/T /df ∧ Ωn−1

X/T + dΩn−1
X/T ).

There is an exact sequence

0→ H(−1) dt−→ H(0) → f∗Ωf → 0. (10.5)

We regard H(−1) as a sub-module of H(0) by this exact sequence. There

exists a natural operation of Gauss-Manin Connection,

∇ = ∂t : H(−1) → H(0). (10.6)
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One obtains a decreasing filtration on H(0) by

H(−k−1) := {ω ∈ H(−1) : ∂t ω ∈ H(−k)}, k ≥ 1

0→ H(−k−1) df−→ H(−k) → f∗Ωf → 0

∇ : H(−k−1) → H
(−k)
f .

We define

Ĥ(0) := lim
←

H
(0)
f

H
(−k)
f

where we have

∞⋂
k=0

H
(−k)
f = 0 (10.7)

K. Saito similarly considers the dual flat vector bundle (Ȟ(0), ∇̌) with the

dual connection, and writes

0→ f∗Ωf → Ȟ(0) df−→ Ȟ(1) → 0. (10.8)

∇̌ : Ȟ(0) → Ȟ(1). (10.9)

and regards H(1) as a quotient of H(0) via this sequence. We then obtain

0→ f∗Ωf → Ȟ(k) → Ȟ(k+1) → 0

∇̌ : Ȟ(k) → Ȟ(k+1).

By local duality for residue pairing ([S1], [G3] page 659 and 693); we have

OT -bilinear maps

H(0) × Ȟ(0) → OT

H(−1) × Ȟ(1) → OT

which induces an infinite sequence of OT -dualities
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H(k) × Ȟ(k) → OT

Using k = 0 in former exact sequences one obtains the following exact

sequence

0→ H(−1) → H(0) χ−→ Ȟ(0) → Ȟ(1) → 0 (10.10)

where χ is given by the correspondence φdx→ φ/(∂f/∂x0...∂f/∂xn).

Then f∗Ωf becomes a self dual module, on which the bilinear form,

Res = Resf,0 = ResX/T : f∗Ωf × f∗Ωf → OT

φdx× ψdx→ Resf,0(
φψdx

(∂f/∂x0...∂f/∂xn)
)

is well-defined.

On the other hand lets consider the set of formal Laurent series in ∂−1
t

with coefficients in Ω•X/T ,

Ω := Ω• = ΩX/T [[∂−1
t ]][∂t] := {

∑
k≤k0

ωk∂
k
t : k0 ∈ Z, ωk ∈ ΩX/T }. (10.11)

Ω• has an increasing filtration

F kΩ• := {ω ∈ Ω•, ω =
∑
m≤k

, ωk ∈ Ω•X/T }. (10.12)

The wedge product and the exterior derivative dX/T of Poincarè complex

Ω•X/T naturally extend to Ω• by formally requiring that these operations

commute with ∂−1
t .

Lets define d̂ : Ω• → Ω•+1, d̂ = ∂−1
t dX/T − df ∧ (.). Then

d̂ ◦ d̂ = 0 (10.13)

d̂F kΩ• ⊂ F kΩ•+1. (10.14)

Proposition 10.2.2. [S1] Consider the natural homomorphisms;
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H→ Rn+1f∗(Ω, d̂)

Then there exists natural ∂−1
t -equivariant isomorphisms

α̂k : Ĥ(−k) ∼= Rn+1f∗(F
−kΩ, d̂), k ≥ 1.

Thus the relation between Rn+1f∗Ω
• and the former construction be-

comes of the form

α̂ : Ĥ(0) ∼= Rn+1f∗(F
0Ω, d̂). (10.15)

K. Saito [S1], [S2] in this way defines a bilinear map

K = Kf : Rn+1f∗(Ω, d̂)×Rn+1f∗(Ω, d̂)→ O[[∂−1
t ]][∂t] (10.16)

which induces higher residue pairings

K(k) = K
(k)
f : H(0) ×H(0) → OT ,

for k ∈ Z.

Definition 10.2.3. (K. Saito) [S1] Denote by K = Kf the OT -bilinear map

Rn+1(f∗Ω, d̂)×Rn+1(f∗Ω, d̂)→ OT [[∂−1
t ]][∂t]

which is induced by

K1(ω, ζ) = ResX/T [β(ω).ζ̄]

where β(ω) =
∑
∂kt (ω)∂−kt and

ζ =
∑

Pk∂
k
t ⇔ ζ̄ =

∑
(−1)kPk∂

k
t

.

Proposition 10.2.4. (K. Saito) [S1] K = Kf has the following properties,

(ωi ∈ Rn+1f∗Ω
•),
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(1) φK(ω1, ω2) = K(φω1, ω2) = K(ω1, φ̄ω2), φ ∈ OT [[∂−1
t ]][∂t]

(2) K(ω1, ω2) = K(ω2, ω1)

(3) ∂tK(ω1, ω2) = K(∂tω1, ω2) +K(ω1, ∂tω2).

Definition 10.2.5. If we expand K in a Laurent series in ∂−1
t

K(ω1, ω2) =
∑
k

K(ω1, ω2)∂
(−k)
t ,

we get an infinite sequence of OT -bilinear forms

K(k) = K
(k)
f : Rn+1(f∗Ω)×Rn+1(f∗Ω)→ OT , k ∈ Z.

Theorem 10.2.6. (K. Saito) [S1] K(k)’s have the following properties;

1) K(k) is symmetric for even k and skew-symmetric for odd k.

2) K(k+1)(ω1, ω2) = K(k)(∂tω1, ω2) = −K(k)(ω1, ∂tω2)

3) ∂K(k)(ω1, ω2) = K(k)(∂tω1, ω2) +K(k)(ω1, ∂tω2)

4) K(k)(tω1, ω2) +K(k)(ω1, tω2) = (n+ k)K(k−1)(ω1, ω2)

5) K(0) induces the zero map on Rn+1(F−1f∗Ω)×Rn+1(F 0f∗Ω) so that the

induced bilinear map on

(f∗Ωf )× (f∗Ωf )(∼= gr0Rn+1(f∗Ω)× gr0Rn+1(f∗Ω))

coincides with Resf,0.

Theorems 8.6.1 and 8.7.1 explain the relation between the form of K. Saito

Kf and the polarization form on Hn(X∞,C) in accordance to property 5).

The form Kf defines a conjugation functor CX , satisfying squares,

V α CαX−−−−→∼= V −α
∨

DRX,λ

y yDRX,−λ
H−λ

∼=−−−−→
c−λX

H∨λ

CαX(ω) = Kf (ω, ) (10.17)

where V stands for the V -filtration, λ = e−2πiα and DR is the solution

functor. Define
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PGrWl V
α := ker(t∂t − α)l+1 : GrWl V

α → GrW−l−2V
α

We will also obtain a set of positive definite bilinear maps,

Kf,l ◦ (id⊗ (t∂t − α)l) : PGrWl V
α ⊗C PGr

W
l V

α → C[t, t−1] (10.18)

Remark 10.2.7. We have included this section in order to realize the close

interactions between Higher residues introduced in 6.5 with the polarization

form in one side and Grothendieck residue on the other side. A reasonable

question is the quantity that Theorem 8.6.1 intersects Theorem 10.2.6 or

the brief in 6.5. First of all there is a positivity criteria established in 8.6.1

from the polarization form, than can not be deduced from 10.2.6. The

inter-relation of K. Saito form with polarizations of the fibers is explained

in the next section. However this relations are extremely complicated to

deduct the second Riemann-Hodge bilinear relations. Mathematically the

fact that two non-degenerate bilinear form are reductions of a global forms

in different charts is not enough to establish they are equal. It seems that

this process according to the properties listed in 6.5 involves some analysis

of residues of the Gauss-Manin connection with respect to different lattices

in the Gauss-Manin system.

10.3 Generalizations

In this last section we embedd our former machinary in a more modern

language, that of D-modules. The D-modules we consider are all equipped

with two filtrations F and W , and their underlying local system is a perverse

sheaf having mixed Hodge structure. In the literature such D-modules are

also called mixed Hodge modules. An example of this is the Gauss-Manin

system defined in 4.1 or 6.1. However the concept of a mixed Hodge module

is more general, in the way that they can be defined along a stratification

of the ambient manifold, by inductive extensions, beginning from a pure

polarized variation of Hodge structure. In this way the solution sheaf can
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be an intersection cohomology complex. Intersection cohomology complexes

are the basic building blocks of perverse sheaves.

Suppose M is a DX -module. The sheaf HomD(M,OX) is called the solution

module of M . The derived functors RHomD(M,OX) are called higher solu-

tion module of M , [AR], [SP]. The Riemann-Hilbert correspondence, [AR],

[SP] asserts that

RHomD(M,OX) : Db
rh(X)→ Db(X,C)

is an equivalence of categories, where Drh means regular holonomic D-

modules. Holonomicity may be thought as a finitness type of assumption for

the solution sheaf of the D-module. A sheaf in Db(X,C) is called perverse if

it is isomorphic to RHomD(M,OX) or the solution module of some regular

holonomic M , [AR].

Definition 10.3.1. A variation of mixed Hodge structure over the punc-

tured disc D∗ is admissible if

• The pure variations GrWm (L) are polarizable.

• There exists a limit Hodge filtration Flim compatible with the one on

GrWm (L) constructed by Schmid.

• There exists a so called relative monodromy filtration U on (E =

Lt,W ) with respect to the logarithm N of the unipotent part of the

monodromy. This means that NUk ⊂ Uk−2 and U induces the mon-

odromy filtration on GrWk (E).

The concept of admissibility is defined similarly in general and not only

over the disc, [AR], [P2]. This assumption is crucial in the mixed case, [SP],

[SAI5], [P2]. It should be understood as the condition in order that the

VMHS can be extended on the degenerate points. We assume this condition

through the remaining of the text.

Example 10.3.2. A basic example is given by a fibration f : X → ∆ with

D = f−1(0) a normal crossing divisor. It leads to the following diagram

164



Chapter 10. Further Studies

X∞ −−−−→ U −−−−→ X ←−−−− E

f∞

y yf yf y
H

e−−−−→ ∆∗ −−−−→ ∆ ←−−−− 0

(10.19)

namely Specialization diagram, where the monodromies are assumed to be

quasi-unipotent. X∞ = X ×∆∗ H is called the canonical fiber, [SP].

Suppose f : X → C is a non-constant function on a complex manifold X,

with f−1(0) possibly a degenerate fiber. The nearby cycle functor applied

to F ∈ Db(X) is

ΨfF = i∗Rp∗p∗F

where p : H×CX → X , i : X0 = f−1(0) ↪→ X, and H is the universal cover

of C∗. The vanishing cycle functor is the mapping cone of the adjunction

morphism i−1F → ΨfF . Thus we have a diagram

i∗F −−−−→ ψ∗F
can−−−−→ φ∗F −−−−→ i∗F [−1]y yT−I yvar y

0 −−−−→ ψ∗F
=−−−−→ ψ∗F −−−−→ 0

(10.20)

Assume QX [n+ 1] is a perverse sheaf (in particular dim(X) = n+ 1). This

is satisfied if X is a local complete intersection. Denote ψfQX , φfQX , be

the nearby and vanishing cycle complexes on X0 = f−1(0). It is known that

ψfQX [n], φfQX [n] are perverse.

Then

ψf,λQX = ker(Ts − λ), φf,1QX = ker(Ts − id)

and φf,λ = ψf,λ for λ 6= 1. We know that

Hj(Fx,Q)λ = Hj(ψf,λQX), H̃j(Fx,Q)λ = Hj(φf,λQX)

Its relation with monodromy is reflected in the Wang sequence
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→ Hj(Lx \X0)→ Hj(Fx)1
N→ Hj(Fx)1(1)→ Hj+1(Lx \X0)→ ...

In order to explain the V -filtration, consider the following example. Let

X = C with coordinate t and Y = 0. Fix a rational number r ∈ (−1, 0),

and let M = OC[t−1]tr, with ∂t acting on the left in the usual way. For each

α ∈ Q define VαM ⊂M to be the C-span of {tn+r|n ∈ Z, n+ r > −α}. The

following properties are easy to check

• The filtration is exhaustive and left continuous: ∪VαM = M , and

Vα+ε = VαM , for 0 < ε << 1

• Each VαM is stable under ti∂jt if i > j.

• ∂tVαM ⊂ Vα+1M , and t.VαM ⊂ Vα−1.

• The associated graded

GrVαM = Vα/Vα−ε =

Ct−α if α ∈ r + Z

0 otherwise

is an eigen-space of t∂t with eigenvalue −α.

The last item implies that the set of indices that VαM , jumps is discrete.

The above construction is generalized to define the V -filtration for a regular

holonomic D-module on X that are quasi-unipotent along a closed sub-

variety Y . It is indexed by Q. If Y is smooth, then for such a D-module,

there always exists a unique filtration satisfying similar properties as listed

above, called the V -filtration along Y , [SP] page 350. Then t would be

replaced by the ideal sheaf of Y ↪→ X. In case Y is not smooth this con-

struction can be done using embedding by graph. For instance, if f : X → C
be a holomorphic function, and and let ı : X → X ×C = Y be the inclusion

by graph.

In the normal crossing case obtained by blow up (or some compactification)

in a locus of an isolated singularity of the divisor, by choosing f to be a
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defining equation of the local divisor, we may reach to a situation similar to

the theorem 8.6.1 when isolated singularity in the normal crossing divisor.

We explain a method of descent on extension and specialization of duality

for D-modules, originally belonged to C. Sabbah and M. Saito cf.[SA4],

[SAI3]. It can also be applied to K. Saito higher residue pairing. Assume

X = Z × C, where Z a complex manifold identified with Z = Z × 0, and

Let M be a holonomic DX -module. For p ∈ N, set,

Mα,p :=

p⊕
k=0

M [t−1]⊗ eα,k (10.21)

with eα,k = 0 for k < 0 and eα,k = tα(log t)k/k! otherwise.

We have natural maps

Mα,p

ap,p+1
↪→ Mα,p+1,

∑p
k=0mα,k ⊗ eα,k 7→

∑p
k=0mα,k ⊗ eα,k

Mα,p+1
bp+1,p→ Mα,p+1,

∑p
k=0mα,k ⊗ eα,k 7→

∑p
k=0mα,k+1 ⊗ eα,k

N = ap−1,p ◦ bp,p−1, m⊗ eα,k → m⊗ eα,k−1

Then

GrV−1Mα,p
∼=

p⊕
k=0

GrVαM ⊗ eα,k

.

Define the maps,

GrVαM → GRV−1Mα,p, m0 7→
⊕p

k=0(t∂t − α)km0 ⊗ eα,k

GrV−1Mα,p → GrVαM,
∑p

k=0mk ⊗ eα,k 7→
∑p

k=0(t∂t − α)kmp−k

For p large enough (actually when (t∂t − α)p = 0 by 10.21) they induce

isomorphisms;

Coker(t∂t) ∼= GrVαM
∼= ker(t∂t)
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The limit is called moderate nearby cycle module, denoted ψmodt,λ M . The

case of moderate vanishing cycle module φmodt,1 is done in similar way, by

considering the inductive system M → M−1,p instead of the single module

Mα,p, and the action of N is the endomorphism t∂t on GrV0 M (see [SA4]

sec. 4). Then we have,

Can = −∂t : GrV−1M � GrV0 M : t = V ar.

which are isomorphism, [SA4]. Let

S : M ⊗M → C[[t, t−1]]

be a duality. Write formally

ψtS : ψtM ⊗ ψtM → Db
mod(0)
C

ψtS(

p∑
k=0

µk ⊗ eα,k ,
p∑
l=0

ml ⊗ eα,l) =
∑
k+l=p

(µk,ml)eα,keα,l

be the formal extensions of the bilinear form S according to the above pro-

cedure and where Db
mod(0)
C is the ring of C∞ distributions with moderate

growth in dimension 1. These distributions naturally receive a doubly in-

dexed V -filtration w.r.t the coordinates t and t̄. Db
mod(0)
C is the set of ele-

ments of the form, [SA4]

∑
α,p

C{t}[t−1]C{t̄}[t̄−1](log |t|)p

which is a DC ⊗DC̄-module in the obvious way. Then, for −1 ≤ α < 0 we

obtain the induced forms,

ψλS : GrVαM ⊗C Gr
V
αM → C, φ1S : GrV0 M ⊗C Gr

V
0 M → C (10.22)

with properties;
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ψλS(N•, •) = ψλS(•, N•), φ1S(N•, •) = φ1S(•, N•)

which says N is an infinitesimal isometry of the descendants. We will also

obtain a set of positive definite bilinear maps,

ψλ,lS ⊗ (id⊗N l) : PGrWl Gr
V
αM ⊗C PGr

W
l Gr

V
αM → C (10.23)

The form S is non-degenerate in a neighbourhood of Z iff all the forms

Pψλ,lS are non-degenerate. Similar statement is true for hermitian or po-

larization forms. The graded pairings ψλS, −1 ≤ α < 0 are given by the

formal residue of the form S at t = α and t = 0 respectively for ψλS.

ψλS = 〈•, •〉 : GrVαM ⊗C Gr
V
αM

〈•,•〉→ C

is given as the composition of a Poincarè pairing followed by residue map,

ψλS〈
p∑
l=0

ml ⊗ eα,l,
p∑
l=0

ml ⊗ eα,l〉 = ∗. Ress=α〈S̃, |t|2sdt ∧ dt̄〉, ∗ 6= 0, α 6= 0

for α 6= 0. The formula for φ1S is similar

φ1S(•, •̄) = ∗. Rest=−1〈S̃, |t|2sFlocdt ∧ dt̄〉, ∗ 6= 0

.

where S̃ is the formal extension of S, and Floc is the local Fourier transform,

cf. [SA4] sec. 4 . We have proved the following.

Theorem 10.3.3. Assume (G, F,W,H, S) be a polarized MHM (hence reg-

ular holonomic) with quasi-unipotent underlying variation of mixed Hodge

structure K, defined on a Zariski dense open subset U of an algebraic man-

ifold X. Then, G and consequently H has a smooth extension to all of X

and the extended perverse sheaf H is also polarized. The polarizations on
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the fibers can be described by residues of the Mellin transform of a formal

extension of the polarization S over the elementary sections, by the two for-

mulas

ψλS〈
p∑
l=0

ml ⊗ eα,l,
p∑
l=0

ml ⊗ eα,l〉 = ∗. Ress=α〈S̃, |t|2sdt ∧ dt̄〉, ∗ 6= 0, α 6= 0

φ1S(•, •̄) = ∗. Rest=−1〈S̃, |t|2sFlocdt ∧ dt̄〉, ∗ 6= 0

.

Summerizing all with 8.6.1, 8.7.1, 9.3.6 and 10.3.3 we obtain the following

result stated in the introduction as Theorem 1.0.9.

Theorem 10.3.4. Assume (G, F,W,H) be a polarized MHM with underlying

admissible variation of mixed Hodge structure H, defined on a Zariski dense

open subset U of an algebraic manifold X. Assume X \ U = D is a normal

crossing divisor defined by a holomorphic germ f . Then the extended MHM

is polarized and in a neighborhood of D, the polarization of the extension

of H is given either by the modified Grothendieck residue associated to the

holomorphic germ f defining the normal crossing divisor as in 8.6.1 or the

usual residues of moderate extension of polarization as in Theorem 10.3.3.

Moreover, the Hodge filtration on the extended fibers are opposite to the limit

Hodge filtration on H. These Hodge filtrations pair together to constitute a

polarized complex variation of HS.

Proof. When we are locally dealing with an isolated singularity of the normal

crossing divisor the polarization is given by the modified residue as in 8.6.1

and 8.7.1, with f the local defining equation of the divisor. The other case is

when dealing with a higher dimensional locus on the divisor that is a smooth

submanifold, then we are in a situation as in 10.3.3. The oppositeness of

filtrations is a consequence of 9.2.6, or the discussion in 8.5.

The result on the family of Jacobians in section 9.3 can be extended as

follows. Let H be a variation of Hodge structure. We are interested to
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family of intermediate Jacobians

J(Hs) = Hs,Z(p) \Hs,C/F
pHs,C

J(H) =
⋃
s∈S∗

J(Hs)

associated to such VMHS, called A Neron model of H (here we have assumed

the weight is 2p-1). The sections of the bundle J(H) are called Normal

functions. Again like 9.3 we have the equality

J(H) = Ext1PV HS(Z(p), HC) (10.24)

where the right hand side is the extension in the category of admissible

polarized variation of Hodge structures, [SAI7].

Theorem 10.3.5. The limit of the Poincare product on the canonical fibers

of the Neron model of a degenerate admissible variation of Hodge structure H

is given by the modification of the residue pairing or induced by the residues

as in 10.3.3. The extension describes the limit Jacobians as the Jacobians

of the Opposite Hodge filtration on H.

Proof. The same diagrams as (9.14) and (9.15) are also valid in this case,

subject to the condition that one only works with sections of J(H that are

quasi-horizontal, i.e that have a lift to a flat section on H.

Extensions of normal fuctions is one of the most important questions in

Hodge theory. Their infinitesimal invariants, i.e those properties related to

the Gauss-Manin connection are one of the active research areas related to

Hodge conjecture.

Example 10.3.6. We give an example of a degenerating Neron model for

Jacobian bundles, to provide some picture of the construction, and leave

more details for further studies. The example is taken from [SCHN], page

52 and belongs to M. Saito. Lets remark that there exists different notions

of extensions for Jacobian bundles. In this example we only describe its
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construction over a Deligne extension. The minimal extension process is left

to the reader as above. Let HZ = Z4, with R-split Hodge structure given by

I1,−1 ⊕ I−1,1 ⊕ I0,2 ⊕ I2,0, and S be given by

Q =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


and nilpotent operator

N1 = N2 =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


Let ω ∈ C have Im(ω) 6= 0. If the mixed Hodge structure be split over Z,

we may set

I1,−1 = C


0

0

1

ω

 , I1,−1 = C


0

0

1

ω̄

 , I1,−1 = C


1

ω

0

0

 , I1,−1 = C


1

ω̄

0

0


These data define an R-split nilpotent orbit on (∆∗)2, by the rule (z1, z2)→
ez1N1+z2N2F , where F is given by Ip,q. it is a pull back of a nilpotent orbit on

(∆∗)2 by the map (z1, z2) 7→ z1z2. F 0 on the Deligne extension is spanned

by

e0 =


0

0

1

ω

 , e1 =
1

s1


1

ω

0

0

 , e1 =
1

s2


1

ω

0

0


It has a presentation as
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O


0

−s1

s2


−→ O3 → F 0 → 0

Thus F 0 is the subset of ∆2×C3 given by the equation s1v1 = s2v2, using the

coordinate (s1, s2, v1, v2, v3). Therefore the Jacobian bundle T , is a bundle of

rank 2 outsite the origin and has fiber C3 over 0. Lets look at the embedding

of TZ. If h ∈ Z4 is any integral vector, one has

S(e0, e
z1N1+z2N2h) = (z1 + z2)(h3 + h4ω)− (h1 + h2ω)

S(ej , e
z1N1+z2N2h) = −(h3 + h4ω)/sj , j = 1, 2

Then the closure of TZ is given by

(e2πiz1 , e2πiz2 , (z1 + z2)(h3 + h4ω)− (h1 + h2ω),−(h3 + h4ω)

e2πiz1
,−(h3 + h4ω)

e2πiz2
)

Then the Jacobian bundle over (∆∗)2 consists of usual intermediate Jaco-

bians, however over 0 is J ×C2, and over remaining points with s1s2 = 0 is

J × C, where J = C/Z + Zω (see the reference for more details).
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